群学网

导航栏

×
你的位置: 群学网 >发言稿 >导航

人教版五年级下册数学《旋转》教案(推荐十六篇)

发布时间:2020-03-24

人教版五年级下册数学《旋转》教案(推荐十六篇)。

♛ 人教版五年级下册数学《旋转》教案 ♛

教学目标

1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际,初步感知平移和旋转现象。

2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

3、初步渗透变换的数学思想方法。

重点难点

能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

教学准备

幻灯片、课件。

教学过程

一、导入

课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。

游乐园里各种游乐项目的运动变化相同吗?

你能根据他们不同的运动变化分分类吗?

在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。

而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。

今天我们就一起来学习旋转。板书课题。

二、学习新课

1、生活中的平移。

平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。

在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。

说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。

你们想亲身体验一下平移吗?

全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?

2、生活中的旋转:

你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)

旋转就是物体绕着某一个点或轴运动。

你见过哪些旋转现象?先说给同桌听听,然后汇报。

像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。

同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!

3.学习例题3:

(1)与学生共同完成其中的一道题,余下的由学生独立完成。

(2)对于有错误的学生,在全班进行讲评。

4.学习例题4:

(1)引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。

(2)先让学生说一说画图的步骤,再来画图。

(3)让学生学会先选择几个点,把位置定下来,再来画图。

(4)课件演示画图过程,并帮助学生订正。

5.课内练习:

2.第6页2题。

3.第9页4题。

板书设计:

旋转

平移和旋转都是物体或图形的位置变化。

平移就是物体沿直线移动。

旋转就是物体绕着某一个点或轴运动

♛ 人教版五年级下册数学《旋转》教案 ♛

设计说明

本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

1、把新知融入到有趣的情境中,激发学生的学习兴趣。

在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。

在学习的.过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。

设计意图:

在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。

课前准备

教师准备PPT课件长方形纸

教学过程

(1)复习巩固,情境导入,激发兴趣

1、求下面每组数的公因数。

42和50 15和5 8和21 18和12

2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。

(2)认识约分

1、尝试“变分数”。

课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

让学生了解“变化”的要求:

①这个分数要与的大小相等。

②这个分数的分子、分母要比的分子、分母小。

2、了解约分的概念。

①所变出的分数与原分数有什么关系?

②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

③请学生说一说所变的分数是怎样得来的。

观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

3、认识最简分数。

①约分后的分子、分母能否再变小了?为什么?

②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

4、说出几个最简分数,强化最简分数的概念。

(3)合作交流,总结方法

1、讨论:你能根据我们化简的过程找到约分的方法吗?

2、小结。

教师板书约分时一般采用的两种方法:

①逐步约分法。

如约分时,依次用12,18的公因数2和3去除,最后约分成。

②一次约分法。

如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

♛ 人教版五年级下册数学《旋转》教案 ♛

人教版五年级下册《数字与编码》数学教案

教学目标:

1、结合生活实际,通过各种方式,让学生了解身份证的编码方法,体会编码编排的特点,初步学会编码。

2、让学生在收集信息,编码的过程中,增强学生的合作交流意识,培养学生的个性创新意识,一定程度上提高学生的信息素养。

3、在活动中使学生体会到数学与现实生活的紧密联系,体验学习数学的乐趣。

教学重、难点:

重点:了解身份证编码,体会编码编排的特点,学会编码。

难点:对收集的信息进行分析与处理。

教具准备:

1、多媒体教学课件。

2、课前收集一些生活中的编码资料。

教学过程:

一、导入

让学生说说生活中的编码现象,引出课题:数字与编码

二、探究身份证号码的规律

1、请同学们观察一组身份证号码:你从中得到哪些信息?

2、(大屏幕出示)身份证的号码信息。

3、结合具体的身份证实例加以说明:330127

19790415

5925

三、实践与运用

1、

同学们互相介绍自己的身份证号码。

2、猜一猜,你的身份证号码可能是多少?

3、小马虎在课前收集了爷爷、奶奶、爸爸、妈妈四个人的身份证号码,但是不记得这四个号码分别是谁的了,你能帮帮他吗?

4、听故事想问题。

一个小伙子偷了一户人家的东西之后猖狂逃跑,并连夜赶制了一张假身份证去登记住宿,结果被服务员一眼认出,你猜到底哪里出现问题?

四、总结与提高

1、我们说了这么多关于身份证的知识,你们知道身份证有哪些作用吗?

2、(大屏幕出示)温馨提示

身份证是我国目前唯一的法定个人身份证件,将来要注意妥善保管好自己的身份证,不要随意借给他人使用。

3、昨天,横沿村的一个老奶奶告诉我,让我帮她找位做了好事不留名的学生,她知道这个同学是我们学校的,校徽上写着5125,我们该怎样找到这位学生呢?

4、请你给自己设计一个编码。

5、读一篇短文:《假如生活中没有编码》

♛ 人教版五年级下册数学《旋转》教案 ♛

/教学目标:

1.通过教学,使学生初步理解同分母分数相加减的算理,掌握同分母分数加、减法的计算法则。

2.培养学生数形结合的数学思想,提高学生迁移类推的能力和计算能力。

3.培养学生规范书写和仔细计算的良好习惯。

重点难点:

理解同分母分数加、减法的算理和计算方法。

教学过程:

一、复习导入

1.填空。

(1)3/4的分数单位是(),它有()个这样的分数单位。

(2)()个1/8是5/8,7/12里有()个1/12.

(3)3个1/5是(),4/7是4个()。

2.谈话:我们在三年级已经学过同分母分数的加、减法,今天这节课,我们继续研究这个知识。

二、新课讲授

1.出示教材第89页例1.

(1)提问:观察图,从图中你都知道了哪些数学信息?(把一张饼平均分成8份,爸爸吃了3/8张饼,妈妈吃了1/8张饼,求爸爸和妈妈共吃了多少张饼)。

提问:求爸爸和妈妈共吃了多少张饼?怎样列式?为什么?

学生思考并回答:1/8+3/8,表示把这两个数合并起来,所以用加法。

提问:你能算出结果吗?怎样想的?

引导学生这样思考:1/8是1个1/8,3/8是3个1/8,合起来也就是4/8,提问:1/8+3/8的和是4/8,为什么分母没变?分子是怎样得到的?

(因为1/8和3/8的分母相同,也就是它们的分数单位相同,所以可以直接用两个分子相加,分母不变)。

板书:1/8+3/8=1+3/8=4/8=1/2

说明:计算的结果,能约分的要约成最简分数。

(2)提问:怎样计算同分母分数的加法。

小结:分数加法的含义与整数加法相同,都是表示把两个数合并成一个数的运算。在计算同分母分数加法时,分母不变,只把分子相加。

(3)即时练习

1/5+1/52/7+3/77/10+1/10

2.同分母分数减法。

(1)教材第90页例题1第(2)问。

教师:爸爸比妈妈多吃多少张饼?

(2)学生讨论。

①应该用什么方法计算?如何列出算式?②计算的结果是多少?你是怎么想的?③你有什么体会?

(3)反馈讨论结果。

板书:3/8-1/8=3-1/8=2/8=1/4

(4)归纳同分母分数减法的计算方法:分母不变,分子相减。

3.小结:观察例1的第1问和第2问,它们有什么共同点?同分母分数加、减法应怎样计算?(学生分组讨论,共同概括)。

教师总结板书:同分母分数相加、减,分母不变,只把分子相加、减。

4.即时练习。

完成教材第90页的做一做。

学生独立完成,集体订正。

三、课堂作业

完成教材第91页练习二十三的第1、2、3、4题。

这是同分母加、减法的单项练习。练习时,由学生独立完成,然后全班反馈,反馈时,让学生说说同分母分数加、减法的计算方法,并提醒学生结果应化为最简分数。

四、课堂小结

今天我们学习了同分母分数的加、减法。同分母分数相加、减,分母不变,只把分子相加、减。

教学板书:

同分母分数加、减法(1)

1/8+3/8=1+3/8=4/8=1/2

3/8-1/8=3-1/8=2/8=1/4

同分母分数相加、减,分母不变,只把分子相加、减。

教学反思:

1.复习分数单位,让学生回忆以前学过的分数加减法的知识,为推导分数加减法算理与整数加减法算理相同作铺垫,提高了学生的迁移类推能力。

2.注重对算理的分析,以算理引入算法,教学时,通过观察、思考、交流等活动,让学生经历用算理引入算法的重要过程。使学生明白:计算同分母分数加、减法时,分母不变是因为分母相同,也就是分数单位相同,所以只用分子进行加、减。所以学生学习的积极性很高。

♛ 人教版五年级下册数学《旋转》教案 ♛

教学目标

1.通过具体事例认识图形的旋转变换,探索它的基本性质。

2.能按要求画出简单的平面图形旋转后的图形。

3.通过观察、操作等探索过程,发展学生的合情推理能力。

教学重难点

重点:认识图形的旋转变换,探索它的基本性质。

难点:能按要求画出简单的平面图形旋转后的图形。

教学过程

一、提问。

在日常生活中,我们经常看到哪些运动是旋转运动的?下列图中哪些是旋转运动的现象?

接着让学生看课本图11.2.1、图11.2.2这五幅图,并回答上述问题。

最后让学生回答:这些图形有什么特征呢?

二、导入新授。

1.看课本图11.2.3,根据单摆上小球的转动,让学生回答。

(1)什么是旋转?

(2)什么样的点是旋转中心?

(3)_____在旋转过程中保持不变,图形的旋转由_____和______所决定。

2.如图,可以看到点A旋转到点A,OA旋转到OA,AOB旋转到AOB,这些都是互相对应的点、线段与角。那么,

点B的对应点是点_____;

线段OB的对应线段是线段______;

线段AB的对应线段是线段______;

A的对应角是_______;

B的对应角是_______;

旋转中心是点______;

旋转的角度是______。

3.想一想。

4.做一做。

课本第10页做一做。学生观察后,回答问题。

(1)旋转后的点、角、线段有什么关系?

(2)旋转后的角度怎样确定?

5.(师生共同讨论。)课本第10页例1和例2。

6.让学生举出现实生活中旋转的一些实例。

(针对自己画的旋转图形,找出对应角、对应点、对应线段。)

三、课堂小结。

你在这节课上学到了哪些知识?谈一谈好吗?

四、布置作业。

♛ 人教版五年级下册数学《旋转》教案 ♛

教学目标

(一)理解并掌握异分母的带分数加、减法的计算法则。

(二)渗透转化的数学思想。

(三)培养学生对计算题审题的习惯。

教学重点和难点

(一)异分母的带分数加、减法计算方法。

(二)退整化分的带分数减法。

教学用具

投影片、流程图。

教学过程设计

(一)复习准备

1.口答填空:(投影片)

2.直接说出下面各题的结果。(投影片)

说同分母带分数加、减法的计算方法。

4.异分母分数加、减法为什么要先通分,然后再计算?

数。)

教师:我们已经学过异分母分数相加、减,也学过了同分母的带分数相加、减,今天来学异分母的带分数相加、减。(板书课题:异分母的带分数加、减法。)

(二)学习新课

1.带分数加、减法运算法则。

想一想,如何用已经学过的旧知识来计算?请试算出结果。

学生讨论、试算。口答,教师板书:

教师用红色粉笔虚线框住的一步,运算熟练后,可以不写出来。

教师:通分后出现了什么问题?教师:出现了被减数分数部分不够减,有什么办法解决这个问题?(请小组讨论。)学生讨论后汇报,教师板书:

另解:

教师:请对比这两种算法,你自己感觉哪种算法好算,就用哪种方法来计算。

(3)口答练习:(学生口答教师板书。)

教师:请说一说异分母的带分数减法的计算方法。

教师:异分母的带分数加、减法的计算法则统一起来怎样叙述?

学生口述,教师板书:先通分,然后按同分母的带分数加、减法的法则进行计算。

教师:计算带分数减法时,要注意什么?

学生口答后教师板书:被减数分数部分不够减时,要从整数部分退1化成假分数再减。

(4)教师:带分数相加、减的方法我们都知道了,它们的计算过程现在用图按顺序标出来:(贴出图)

教师:请按图说一说计算带分数减法的过程。然后按图所示的顺序计算下面两题:

请几位同学用投影片做,集体订正。

2.练习:(投影片)

根据学生口答,投影改正:

口答练习:(说出过程。)

教师:这两道口答题中,整数部分退的1化成的假分数,分母如何确定的?(与减数分母相同。)

(2)看下面这题的计算,对吗?为什么?

(3)下面这题的计算对吗?有没有错点?

教师:通过上面几题的讨论练习,你有什么体会?

请学生说自己的体会。最后教师归纳:

做计算题也要认真审题,每做一步都要分析这一步的具体条件,以此来确定这一步应该做些什么。计算中要养成一步一检查的习惯。

(三)巩固反馈

1.口算下面各题。

2.判断正误。并说明理由

3.笔算。(请四位同学写投影片。)

(四)课堂总结与课后作业

1.异分母的带分数加、减计算方法。

2.作业:课本136页练习三十,1,3,4。

课堂教学设计说明

本节内容,是在学习过异分母分数加、减法和同分母的带分数加、减法的基础上进行的。利用旧知识的迁移,带分数加、减法的算法及算理很容易掌握,所以教学中以学生自学为主。由于带分数退位减计算中容易出错,教学中安排了较多的例题和练习,尤其是流程图的讨论,对退整化分,结果的化简等易错点进行有针对性的练习,目的是提高学生计算的熟练、准确度。在教学中还安排了易错题的讨论来帮助学生养成良好的审题习惯和检查的习惯。

新课学习分为两部分。

第一部分学习异分母带分数加、减法的计算方法。共分四层,通过试算,掌握带分数加法的计算方法;试算带分数减法及退位减的方法讨论;小结带分数加、减法的计算法则;通过按流程图进行计算,进一步掌握带分数加、减法的计算方法。

第二部分是针对计算中的易错点进行练习。

♛ 人教版五年级下册数学《旋转》教案 ♛

教学目标:

1、利用学生熟悉的生活情境,通过画图的方式,使学生找到打电话的最优方法。

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、进一步体会数学与生活的密切联系以及优化思想在生活中的应用。

4、感受猜想与验证的重要性。体会理论上的最优与实践中的最优的区别。

教学重点:理解打电话的各个方案并从中优化出最好的方案。

教学难点:让学生通过画图的方式发现事物隐含的规律。

一、谈话引入

1、六一儿童节快到了,为了庆祝我们的节日,学校组织了一个15个人的合唱队。星期天,李老师接到学校紧急通知,要合唱队的15人去参加演出,怎么可以尽快地通知到这15个队员呢?”同学们帮忙想想办法吧!

2、学生汇报想法。(师引导)

3、小结入题,板书课题。

为了更好地研究今天的这个问题,我们假设每一次通话要一分钟,每个学生都在家。那么你估计一下你最少要几分钟?(学生可自由猜测)

二、探究新知

先让学生想想都有哪些通知的方法?这里有必要引导学生说出两大种方法:平均分组和不平均分组。

猜一猜:哪种方法快?比如平均分成3组和平均分成5组比,哪种快。是不是分的组数越多就越快?我们怎样才能比较出哪种方法最快?

1、每个同学独立思考,把你所知道的方法都列出来,并比较一下, 哪种方法最好,想一想,从刚才的比较中,你领悟到什么了没有?

2、教师巡视,参与讨论,了解情况。

3、反馈。学生分别说出自己找到的最好的方法。你刚才比较了几种方法?(设计意图:让学生把各种方法都列出来,再作比较,经历优化的过程)

方案1要15分钟。这样肯定太慢了。那么用分组的方法怎么样呢?请用分组的同学说说你们的方案。

方案2(1):5组,每组3人(要7分钟)

方案2(2):3组,每组5人(要7分钟)这两种方案与之前你猜想的结果怎么样?是不是组分得越多就越快?有什么想说的吗?所以在猜想上,我们要大胆,要想出你尽可能的答案,然后再验证。如果每组分的人数不同呢,结果会怎样?

方案2(3):4组(4、4、4、3)(要6分钟)

方案2(4):3组(6、5、4)(要6分钟)

这两种方法与前两种方法有什么不同?为什么时间会缩短?(每个组长都不会闲了)方案2(5):5组(5、4、3、2、1)(要5分钟)

老师、组长和组员都不闲着,应该怎样设计方案呢?

方案3:相互转告

小组讨论,汇报结果。(设计意图:第二种方案的帮忙转告。汇报时,让学生说说自己都列举并比较了哪几种方案,认为哪种方案最好。只有让学生亲自去比较才能体会到优化的过程,使学生体验到优化是怎么一回事。让学生去比较了各种方案,学生也更容易得出各种方案优化的原因,从组长不空闲到老师、组长不空闲,再到老师、组长和组员接到通知的组员都不闲。

三、发现规律

这的确是个好办法,这个方案,你们发现有什么规律吗?

1、仔细观察示意图,第一分钟时,有几人打电话?打完电话后接到通知的队员和老师共有多少人?除去教师,通知到几名学生?第二分钟呢?第三分钟呢?你发现了什么?每增加1分钟,新接到通知的队员人数有什么规律?

2、你能找你的方法向大家介绍一下吗?

发现一:每增加一分钟新接到通知的队员数正好是前面所有接到通知的队员和老师的总数,也就是第n分钟新接到通知的队员数等于前(n-1)分钟内接到通知的队员和老师的总数。

发现二:第n分钟所有接到通知的队员和老师的总数就是一个等比数列,通项公式为an=2n,

发现三:第n分钟所有接到通知的队员总数就是(2n-1)人。

四、应用规律

1、既然大家都发现了这一规律,那么5分钟可以通知多少人?6分钟、7分钟呢?

组织学生在小组中进行交流探讨,然后汇报。

2、老师要通知50位学生来学校举行活动,如果用打电话的方式,最少需要多少分钟?

五、联系生活,拓展延伸

有人说“将一张足够大的纸连续对折二十五次,这摞纸的高度将超过南岳衡山的海拔高度”,他说的是真的吗?你能用本堂课学习的知识尝试解决吗?

想想生活中还有哪些事物的数量是成倍增长的呢?

板书设计: 打电话

教学后记: 提醒学生在具体实施中还有个问题要解决,那就是要设计好打电话的顺序,也就是说每个队员要清楚他接到电话后,后面要怎样继续通知其他队员。因此这个方案还需要事先制定好一个打电话的流程示意图,让老师和每个队员都明确接到通知后,按照怎样的顺序通知后面的队员。只有严格按照事先制定好的方案执行,才能达到节省时间的目的。

♛ 人教版五年级下册数学《旋转》教案 ♛

五年级下册数学第二单元教案篇1

教学内容:

人教版小学数学教材五年级上册第95页主题图、96页例3、第96页“做一做”,

教学目标:

1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

教学重点:

掌握梯形面积的计算公式,并会用公式解决实际问题。

教学难点:

理解梯形面积公式推导方法的多样化,体会转化的思想。

考点分析:

会用梯形面积公式解决实际问题。

教学方法:

游戏引入——新知讲授——巩固总结——练习提高

教学用具:

课件、多组两个完全相同的梯形。

教学过程:

一、提出问题(课件出示教材第95页的主题图)。

教师:同学们在图中发现了什么?

教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

二、通过旧知迁移引出新课。

教师:同学们还记得平行四边形和三角形的面积怎么求吗?

1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

三、揭示课题;

根据学生的回答,引出新课,梯形的面积。

板书课题--梯形的面积。

四、新知探究

1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

2、请同学们打开学具袋,看看里面的梯形有什么特点?

生:各种梯形,每种两个,每种梯形颜色一样。

教师提出要求

①选择自己喜欢的梯形把它拼成我们学过的图形

②想一想,拼成怎样的图形,利用怎样的方法拼成的?

③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

④先独立思考后小组交流

生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。

3、(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)

师引导得出如下几种推导思路:(师边利用课件演示边讲解)

思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出

梯形面积=(上底+下底)×高÷2

思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出

梯形的面积 =上底×高+(下底-上底)×高÷2

=(上底+下底)×高÷2

思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出

梯形的面积 =上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。

师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2

五、巩固提升

1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?

S =(a+b)h÷2

=(36+120)×135÷2

=156×135÷2

=10530(㎡)

2、计算下面图形的面积,你发现了什么?

六、总结结课

1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?

2、我们是怎样得出梯形面积的公式的?

(二)教师总结

今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。

板书设计:

梯形面积=(上底+下底)×高÷2

梯形的面积 =上底×高+(下底-上底)×高÷2

=(上底+下底)×高÷2

梯形的面积 =上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

五年级下册数学第二单元教案篇2

教学目标:

1.知识与技能:理解公倍数和最小公倍数的含义。

2.过程与方法:经历探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3.情感态度与价值观:结合生活实际,激发学生学习数学的愿望,培养学生学习数学的乐趣。

教学重点:

理解公倍数和最小公倍数的含义。

教学难点:

掌握找最小公倍数的方法。

教学用具:

课件

教学过程:

一、 复习导入

说出2的倍数有哪些,3的倍数有哪些?

二、 教学公倍数和最小公倍数的含义

(一)探索公倍数

1.观察刚才同学们说的2的倍数和3的倍数,你有什么发现?

2.师生共同观察分析得出公倍数的含义。

(二)探索最小公倍数,引出课题。

三、探索找两个数最小公倍数的方法

(一)找两个数最小公倍数的一般方法

1.列举法

2.分解质因数法

3.短除法

(二)找两个数最小公倍数的特殊方法

1.找出下面几组数的最小公倍数。

7和14 8和24 9和18

5和6 2和7 9和4

2.观察每横数据和结果,你有什么发现?为什么

3.师生共同观察分析得出特殊情况下的特殊方法。

四、巩固练习

课件出示习题。

五、小结:今天你有什么收获?

板书设计:

找最小公倍数

4的倍数有:4、8、12、16、20、24、28… …

6的倍数有:6、12、18、24、30、… …

4和6公倍数有:12、24、… …

最小公倍数: 12

五年级下册数学第二单元教案篇3

教学内容:

北师大版数学五年级上册6—7页的内容。

教学目的:

1、通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。

2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。

3、通过探究3的倍数的特征的活动过程,让学生获得积极的情感体验,激发学习数学的兴趣

教学重点:

理解3的倍数的特征。

教学难点:

探索活动中,发现规律,并归纳出3的倍数的特征。

教具准备:

实物投影仪、数字卡片等。

学具准备:

每人几张数字卡片。

教学过程:

一、谈话导入,揭示课题。

我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。

板书课题:3的倍数的特征。

二、探索交流、获取新知。

(一)活动一:复习巩固。

1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?

2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)

3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)

(二)活动二:探索研究3的倍数的特征。

1、在书上第6页的表中,找出3的倍数,并做上记号。

(先独立完成,看谁找的快?)

2、观察3的倍数,你发现了什么?

教师参与到讨论学习中。

先独立思考,想出自己的想法。

然后与四人小组的同学说说你的发现。

生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。

生2:十位上的数也没有什么规律。

生3:将每个数的各个数字加起来试试看

3、你发现的规律对三位数成立吗?找几个数来检验一下。

(1) 自己先找几个数试一试。

(2)然后在小组内说说你验证的结论。

(三)活动三:试一试

在下面数中圈出3的倍数。

28 45 53 87 36 65

(先自己圈,然后说说你是怎样判断的?)

(四)活动四:练一练

1、请将编号是3的倍数的气球涂上颜色。

36 17 54 71 45 48

(自己独立完成,在小组内说说自己的想法。)

2、选出两个数字组成一个两位数,分别满足下面的条件。

3 0 4 5

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5 的倍数。

(4)同时是2,3和5的倍数。

(独立完成,说说你的窍门和方法。)

(五)活动五:实践活动

在下表中找出9的倍数,并涂上颜色。

(可以在自主实践以后再交流。)

三、总结。

通过这节课的学习,你有什么收获?

板书设计:

课题:探索活动(二)3的倍数的特征

1、在下面数中圈出3的倍数。

28 45 53 87 36 65

2、选出两个数字组成一个两位数,分别满足下面的条件。

3 0 4 5

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5 的倍数。

(4)同时是2,3和5的倍数。

五年级下册数学第二单元教案篇4

教学内容:

教科书第94-96页的例1、例2,以及相应的“试一试”和“练一练”,练习十八第1、2题。

教学目标:

1、使学生联系分数的意义,初步掌握用分数表示具体情境中简单事件发生的可能性的方法,会用分数表示可能性的大小,进一步加深对可能性大小的认识。

2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

教学重点:

理解并掌握用分数表示可能性的大小。

教学难点:

在认识事件发生的不确定现象中感受统计概率的数学思想。

教学过程:

一、创设情境,导入新课

师:老师把一个红色乒乓球和一个白色乒乓球放入黑色袋子里,让你摸一摸,它们的可能性相等吗?

生:相等。

师:如果放入两个红球和一个白球,可能性相等了吗?

生:不相等。

师:我们这节课来研究用分数来表示它们的可能性的大小。(板书课题:可能性的大小)

二、自主探索,合作交流

1、教学例1

谈话导入:同学们喜欢打乒乓球吗?如果让你来当裁判,你会用什么方法决定由谁先发球?

出示例1场景图,提问:裁判在做什么?(猜球。场景再现)

师:用猜左右的方法决定由谁先发球公平吗?为什么?

学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。

指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。

师:你是怎样理解这里的1

/

2?

(评析:联系学生的生活实际,在游戏活动中引导学生探索事件发生的可能性,从“猜左右争夺发球权”的活动展开,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验,使学生围绕这个问题展开思考和交流。)

2、同步练习

拿出装有一个红球和一个白球的袋子,问:从中任意摸出一个球,摸到白球的可能性是几分之几?

生:1

/

2

师:如果口袋里再放入一个红球,任意摸一个,摸到白球的可能性又是几分之几?

生:1

/

3

师:袋子里都只有一个白球,摸到白球的可能性怎么会不同呢?

生:第一次口袋里只有两个球,第二次口袋里有三个球。

追问:如果再往袋里放入一个白球,任意摸一个,摸到的白球的可能性又是几分之几?如果要使摸到白球的可能性是1

/

5,口袋里该怎样放球?

小组讨论,学生汇报:放5个球,其中白球1个。

(评析:通过学生熟悉的摸球活动,引导学生认识到:有几个球,摸到其中一个球的可能性就是几分之一,帮助学生进一步明确表示可能性大小的思考方法。)

3、教学例2

出示例2中的实物图,让学生说说这6张牌各是什么牌,帮助学生区分“红桃”与“黑桃”。

师:把这些牌一下反扣在桌上,从中任意摸一张,摸到红桃A的可能性是几分之几?

讨论后明确:一共有6张牌,红桃A有1张,摸到红桃A的可能性是1

/

6。

一共有6张牌,摸到每张牌的可能性都是1

/

6。

师:你还想提什么问题?

小组讨论交流汇报。

生1:从中任意摸一张,摸到“2”的可能性是几分之几?

生2:摸到方块2的可能性是1

/

6,摸到草花2的可能性是1

/

6,摸到“2”的可能性是1

/

3。

生3:一共有6张牌,“2”有两张,摸到“2”的可能性是2

/

6,也就是1

/

3。

生1:从中任意摸一张,摸到“红桃”的可能性是几分之几?

生2:这6张牌中,红桃有3张,摸到红桃的可能性是3

/

6,也就是1

/

2。

对比练习:红桃A、红桃2、红桃3、黑桃A、黑桃2五张,从中任意摸一张,摸到“红桃”的可能性是几分之几?

请学生自己提问题,自己说可能性。

汇报1:摸到A的可能性是几分之几?

汇报2;摸到红色牌的可能性是几分之几?

汇报3:摸到黑桃3的可能性是几分之几?

(评析:通过讨论使学生明确:从6张牌中任意摸到一张,每一张牌被摸到的可能性都是1/6,从而为解答下面的问题奠定认识基础。教学时,鼓励学生从多个角度进行思考,以促使学生更加透彻地把握问题的实质,丰富学生对基本思考方法的体验。)

4、同步练习

①学生口答第(1)题中的几个问题

②学生讨论:如果指针转动80次,可能有多少次停在红色区域?

指出:由于停在红色区域的可性是1

/

8,所以指针转动80次,可能停在红色区域的次数是80次的1

/

8,也就是10次。

③追问:如果把转盘上的指针转80次,停在红色区域的次数一定是

10次吗?

生:可能是10次,也可能多于或少于10次。

(评析:通过练一练,让学生先用分数表示指针转动后,停在每种颜色区域的可能性,再根据可能性推算指针转动80次,可能停在各种区域的次数。进一步加深对用分数表示的可能性大小的认识。)

三、综合练习,实践运用

1、做练习十八第一题

先让学生根据题意连一连,再指名说说思考的过程。

追问:任意摸一个球,摸到红球的可能性分别是多少?

2、做练习十八第二题

①学生读题后,引导学生列表整理题中的条件。

红色正方体6个面上的数:1、2、3、4、5、6;

绿色正方体6个面上的数:1、1、2、2、3、3;

蓝色正方体6个面上的数:1、2、2、3、3、3。

②组织比较:正方体都是6个面,为什么抛红色正方体,落下后1、2、3朝上的可能性都是1/6,而抛绿色正方体,落下后1、2、3朝上的可能性都是1/3?

③学生完成第(2)小题后,组织比较:抛蓝色正方体,落下后1、2、3朝上的可能性为什么不一样?

3、摸球比赛

师:红球4个,黄球3个,如果摸到红球算老师赢,摸到黄球算你们赢,你们愿意吗?

生:不愿意。

师:为什么?

生:摸到的红球可能性是4

/

7,摸到黄球的可能性是3

/

7,比赛不公平。

(评析:通过练习,让学生判断简单事件发生的可能性,使学生进一步积累用分数表示事件发生的可能性的经验,加深对可能性大小的认识。通过计算可能性的大小判断游戏规则是否公平,让学生用所学知识解决身边的实际问题,有利于学生在解决问题的过程中进一步掌握用分数表示可能性大小的方法,发展数学应用意识。)

总评:在游戏活动中引导学生探索事件发生的可能性,先从“猜左右争夺发球权”的游戏活动展开,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验,让学生在对可能性定性描述的基础上,有意义地接受“猜对或猜错的可能性都是1

/

2”。然后借助摸牌游戏情境,让学生收集数据,并借助已有的生活经验,自主探索事件发生的可能性是几分之几。并通过练习,进一步体会数学知识间的内在联系,应用学习过可能性的知识解释一些相关的日常生活现象,提出并解决一些简单的实际问题,使学生的数学应用意识有所增强。

五年级下册数学第二单元教案篇5

教学目标:

1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

2、培养分析、比较及综合概括能力。

3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

教学重点:

掌握3的倍数的特征,正确判断一个数是否是3的倍数。

教学难点:

探索3的倍数的特征。

教学过程:

一、【创设情景,明确目标】(3分钟)

(一)创设情景,反馈预习

1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

P:16、24、85、102、138、170、

2 的倍数:16、24、102、138、170

5的倍数:85、170

即是2的倍数又是5的倍数:170

师:说一说,你是怎么想的?

生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

3、教师板书课题:3的倍数的特征。

(二)明确目标,引领方法

1、出示学习目标(见学案),生自读目标。

2、同伴说说自己的理解,谈谈如何实现目标。

【设计意图】交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

二、【自主学习,同伴合作】(15分钟)

(一)自主学习,自我感知

1、小棒游戏,探究规律

师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

师:你来!

师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

学生摆出:51

师:51是3的倍数。我算的比计算器快吧?

师:能摆一个三位数吗?

学生摆出:312

师:312是3的倍数。

师:再来一个难点的。

学生摆出:1123

师:1123不是3的倍数。

师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

2、小组合作探究

(1)用3根小棒摆一个数,这些都是3的倍数吗?

师:我们一起来看探究要求:用相应根数的小棒在数位表上各摆出3个数。

小组内合理分工,请大家看一下导学案的合作要求

①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

②用计算器算一算,将3的倍数圈出来。

③仔细观察表格,从中你发现了什么?

(2)用4根再摆出一些数,这些都是3的倍数吗?

(3)用6根再摆出一些数,这些都是3的倍数吗?

(4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

预设

第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

第三族,用6根小棒摆:都是3的倍数。

问题:你发现了什么?

生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

师评价:关键要看小棒的根数,了不起的发现。

生:只要小棒的根数是3的倍数,这个数就是3的倍数。

师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

生: 9根、12根、15根……都行——

(5)真的是这么回事吗?以9为例摆摆看。

师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

生:我用9根小棒摆出了36,36是3的倍数。

师:哪个小组还想出三位数、四位数或是更大的数?

生:我用9根小棒摆出了216,216是3的倍数。

生:我用9根小棒摆出了3015,3015是3的倍数。

师:说得完吗?

生:说不完。

师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

生:很合理。

师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

3、总结提升

师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

师:小组内交流一下。

小组活动。

师:谁来说说?

生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

生2:各个数位上数的和是3的倍数,这个数就是3的倍数。

生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

4、探究原因,区别理解

(1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

研究16

师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

(2)问:为什么3的倍数特征要看各个数位相加的和呢?

举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

138分一分,试一试,看看是不是3的倍数

一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

(2)总结:梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

三、【巩固拓展,形成能力】(10分钟)

(一)巩固训练,夯实基础

1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

把一个数各个数位上的数相加是3的倍数……

2、圈出下面是3的倍数的数:42、78、111、165、655、5988

3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

(预设:生1:1。

师:可以吗?还有其他答案吗?

生2:1,4,7都可以。

师:理由呢?

生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

师:恭喜你,三种可能都被你们猜中了!

师:如果它既是2的倍数,又是3的倍数呢?

生:24。

师:为什么只有24可以呢?

生:因为只有24既是2的倍数,又是3的倍数。)

(二)拓展训练,灵活创新

以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)

13689362754、123456789

老师:如果用各个数位之和是3的倍数,比较麻烦。

但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

教师巡视,个别辅导。

(二)同伴讨论,互助共进

完成学案中“同伴合作,互助共进”内容。

重点交流学生所举的例子。

教师巡视,个别辅导。

【设计意图】这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

四、【师生共学,交流分享】(5分钟)

(一)小组展示,彰显风采

指名小组进行汇报。

(二)师生完善,共同提高

1、学生纠正、补充、质疑

2、教师精讲、点拨、评价

在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

【设计意图】通过教师的点拨完善学生对比的认识。

五、【巩固拓展,形成能力】(10分钟)

(一)巩固训练,夯实基础

先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

把一个数各个数位上的数相加是3的倍数……

2、看一看哪些是3的倍数:42、78、111、165、655、5988

原来判断是用除法,现在用加法。改革了

3、不用计算,能快速算出来那个式子有余数吗?

802、3;342、3

4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

5、下面都是吗?789、345、654

都是,有什么特点?相邻、连续三个自然数。

是不是所有都是呢?举例:123.为什么呢?

654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

♛ 人教版五年级下册数学《旋转》教案 ♛

质数和合数(课本第14页例1及第16页练习四1~3题)。

1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2、知道100以内的质数,熟悉20以内的质数。

3、培养学生自主探索、独立思考、合作交流的能力。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

1、学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

(3)教学质数和合数的概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

2、教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

3、出示课本第14页例题1。

找出100以内的质数,做一个质数表。

②用筛选法排除。首先排除掉2的倍数,再排除掉3的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

这节课,同学们又学到了什么新的本领?

一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

♛ 人教版五年级下册数学《旋转》教案 ♛

教学目标:

1.通过学习,使学生掌握三个同分母分数连加、连减的计算方法。

2.培养学生运用多种方法解题的能力。

3.培养学生规范书写的习惯。

重点难点:

掌握三个同分母分数连加、连减的计算方法。

教学过程:

一、复习导入

1.口算下列各题。

1/4+2/41/5+3/52/7+2/71/8+3/83/9-2/97/10-5/107/9-4/95/6-1/6

2.说一说同分母分数加、减法计算法则。

二、新课讲授

1.出示以下例题3.

电视台少儿频道各类节目播出时间分配情况图

2.提出问题,尝试解决。

(1)问题一:前三类节目共占每天节目播出时间的几分之几?

①找出前三类节目所占的分数。(4/151/157/15)

②尝试计算这三个分数的和。

学生可能出现以下两种不同的计算方法。

a、4/15+1/15=4+1/15=5/155/15+7/15=5+7/15=12/15=4/5

b、4/15+1/15+7/15=4+1+7/15=12/15=4/5

③你喜欢哪一种方法?并说明为什么?

(2)问题二:其他节目占每天播出时间的几分之几?

①想一想:每天播出的总时间用什么数表示?

②求其他节目时间应该怎样算?

列出算式:1-2/15-12/15

③尝试计算

算法一:1-2/15-12/15=15-2-12/15=1/15

算法二:2/15+12/15=2/15+12/15=14/15

1-14/15=1/15

3.归纳同分母分数连加、连减的计算方法

同分母分数连加、连减,要把分子连加、连减,分母不变。

三、课堂作业

完成教材第91~92页练习二十三的第5~11题。

1.第5题

这是一道利用连加、连减知识解决实际问题的习题,教师要引导学生理解题意,分析题中的数量关系,由学生独立列式解决第(1)(2)题,然后全班反馈,解决第(3)题时,教师让学生提出问题,只要合理教师都要给予肯定,并让学生说一说提出的理由和解答的方法。

2.学生独立完成第6~8题

练习时,让学生独立完成,然后全班反馈。反馈时,让学生说说自己的计算方法。

3.第9题

这是一道分数连加、连减的开放型练习,条件和问题同时开放,练习时要让学生审题,按要求分类,再写算式。

4.第10题

算式接龙。多让一些学生起来做游戏。

5.第11题

教师可以引导学生借线段图来理解题意。

四、课堂小结

今天,我们学习了同分母分数的连加、连减的计算方法,并运用这些知识解决了许多生活中简单的数学问题。

教学板书:

同分母分数加、减法(2)

例3:(1)前三类节目共占每天节目播出时间的几分之几?

4/15+1/15+7/15=4+1+7/15=12/15=4/5

(2)其他节目占每天播出时间的几分之几?

1-2/15-12/15=15-2-12/15=1/15

同分母分数连加、连减,要把分子连加、连减,分母不变。

教学反思:

在教学中为学生创设了他们熟悉的生活情境,让学生在情境中发现问题,提出问题,解决问题,并在这个过程中,让学生学习通分母分数连加、连减的计算方法,由于学生在上节课已经学习了两个分母两个分母相同的分数加减法,因此在教学中将自主探究的权利交给学生,让他们在自主探究的过程中,过得成功的喜悦。

♛ 人教版五年级下册数学《旋转》教案 ♛

课题:应用题的对比

教学目标

1.掌握一个数比另一个数多几和求比一个数多几的应用题的数量关系.

2.正确解答应用题.

教学重点

掌握两类应用题的数量关系.

教学难点

掌握两类应用题的数量关系.

教具学具准备

投影仪、投影片、学具等.

教学步骤

一、铺垫孕伏

1.游戏活动,创设情境.

(1)启发学生根据两组人数不同的条件,提出问题,并口头解答,使学生明确,可以提出:

甲组有8人,乙组有6人,甲组比乙组多几人?

甲组有8人,乙组比甲组少2人,乙组有几人?

乙组有6人,甲组比乙组多2人,甲组有几人?

甲组有8人,乙组有6人,乙组比甲组少几人?

(2)通过游戏,互相议一议,你知道了什么?

数量关系一样,只是问法不一样.

②甲组有8人,乙组比甲组少2人,乙组有几人?

知道甲组人多,乙组人少,求少的.

③乙组有6人,甲组比乙组多2人,甲组有几人?

知道甲组人多,乙组人少,求多的.

注意:学生提出的问题不要限制,但教师重点训练①、②两种类型.

2.操作学具,巩固所学的数量关系.

(1)用学具摆一摆:一个数比另一个数多几的数量关系.

(2)同桌互相交流,知道了什么?

教师巡视.并个别指导,学生操作和口述.

二、探究新知

1.演示课件“比一个数少几的应用题(例12)”,出示例12.

2.小组活动.

(1)教师继续演示课件“比一个数少几的应用题(例12)”,学生讨论两道题的已知条件和所求问题.

(2)通过讨论和看示意图,知道了什么?

使学生明确:两道题都是红花多,黄花少.

(3)想一想:这两道题有什么相同点,有什么不同点?

使学生明确:第一个已知条件相同;不同的是第一题的第二个条件是第二题要求的问题,第一题要求的问题是第二题已知的第二个条件.两题都用减法计算.

3.独立解答.

(1)填空(课本).

(2)订正时,说一说是怎样想的?

4.反馈练习:完成“做一做”.

独立填在课本上,订正时启发学生互相说一说是怎样想的?

三、全课小结

师生共同总结这节课学习什么,注意什么.

随堂练习

1.练习二十四第8题.

分组练习,组长带领同学订正.

2.练习二十四第3题改编为接力计算.

以上是小编整理的有关小学数学教案人教版相关内容,希望大家喜欢!

♛ 人教版五年级下册数学《旋转》教案 ♛

教学内容 P19例1、做一做、练习五第1—2题

教学

目标

知识与技能:让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的。

过程与方法:使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。

情感、态度与价值观:渗透“数形结合”的思想,发展学生的空间观念。体会生活中处处有数学,产生对数学的亲切感。

教学重点 经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。

教学难点 灵活运用数对知识解决实际问题。

教学方法 直观演示法与自主探索、小组合作的方法。

教学准备 多媒体课件

教学过程设计(含各环节中的教师活动和学生活动以及设计意图)

教学过程 一、创设情境,激趣导入

课件出示主题图,播放动画。

怎样才能既准确又简明地表示张亮同学的位置呢?这节课我们就一起来进一步学习 “确定位置”。(板书:确定位置)

二、探索新知

1、课件出示例1的内容。

(1)学生读题,了解已知信息。

教师引导学生可以根据自己在教室里的位置来思考这个问题。

(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?

学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。

2、认识数对,学会用数对确定具体情境中的位置。

(1)提出问题(看来用第几列、第几行描述一个人的位置真好,让我们有了一个统一的说法。)

大家觉得用这种方法表示一个人的位置,简炼吗?

师:能不能把这种方法再简化一下?

(2)创造、交流

同学们可了不起,在这么短的时间内,创造出了这么多种不同的表示方法。

这一种是哪个小组创造的?说说你们是怎么想的?

师;不错,既然每个小组都不约而同地保留下了这两个数,说明——?这两个数很重要!

真好!那这里的2和3各表示什么意思呢?

生:……

说得太棒了,数学规则需要统一,想不想知道数学上统一使用的方法,请看先写4,接着打上逗号,然后写3,最后打上括号,因为它们是一个整体。大家知道吗?像这样,用列数和行数组成的一对数,叫做——数对。

书:(2,3)

(4)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?

启发学生思考,引导学生用数对表示位置。

3、游戏中概括提升

我发现咱们班同学学得特别快,下面咱们玩个游戏好吗?

(1)师出生对

我说数对,请符合要求的同学快速地站起来。看谁反应最快!

(3,1)(3,2)(3,3)(3,4)(3,5)

奇怪,怎么就正好站起来这么一排呢?

(2)生出生对

如果让你来出数对,你能让一排同学站起来吗?谁来试试?

生:……

师:也不错!有没有谁能说出点不一样的?

生:(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)

师:发现什么了?能说说为什么吗?

生:……

师:也就是说,数对中的第二个数相同,他们就都在同一行。

(3)师再出

不过,老师还有个本领:只说一个数对,就可能让一排同学都站起来,你们信不信?要不咱试试?

示(4,_)可能是哪些同学?

师:你的数对是?奇怪,我上面写(4,1)了吗?那你为什么站起来?

生:(第一个数是4,表示第4列,第二个数是求知数,所以第4列的每一个同学都有可能)能不能确定,到底是谁?如果_等于3呢,表示的一定是谁?其他同学坐下去,看来,要想确定某一个人的位置,只知道列数行不行?还得知道?(用数对表示位置一定要用到两个数)

师:(__)又可能是哪些同学?(全班同学都站起来了)。

师:全班同学都有可能吗?_、_表示两个相同的数,你的数对是(?,?),符合吗?不符合的同学请坐下。当_=1、2、3、4、5时,看来(__)能不能表示全班同学?只能表示什么?只能表示列数、行数相同同学的位置。

三、做一做,巩固确定位置的方法。

1、出示情景。组织学生观察情景,思考教师的提问。

2、引导学生利用在例题中学到的确定位置的方法来回答问题。

3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。

四、反馈练习。

完成教材第19 页的做一做。

五、课堂小结。

通过今天的学习,你有哪些收获?

♛ 人教版五年级下册数学《旋转》教案 ♛

学情分析:

相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

教学目标(课时目标):

1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

3、逐步掌握画线段图分析题目的方法。

教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

教学难点:认识相遇的过程中理解运用等量关系的解决问题。

1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

“相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

教学反思:

行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

♛ 人教版五年级下册数学《旋转》教案 ♛

【教学内容】

质数和合数(课本第xx页例x及第xx页练习)。

【教学目标】

1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2、知道100以内的质数,熟悉20以内的质数。

3、培养学生自主探索、独立思考、合作交流的能力。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

 【教学重难点】

重点:理解质数、合数的意义。

难点:掌握判断质数与合数的方法。

【教学过程】

 一、复习导入

1、什么叫因数?

2、自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

二、新课讲授

1、学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

(2)根据写出的因数的个数进行分类。(填写下表)

(3)教学质数和合数的概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

2、教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3、出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。首先排除掉2的倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

③注意1既不是质数,也不是合数。

100以内质数表。

三、课堂作业

完成教材第xx页练习的第x题。

四、课堂小结

这节课,同学们又学到了什么新的本领?

学生畅谈所得。

【板书设计】

质数和合数:

一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

【教学反思】

教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

♛ 人教版五年级下册数学《旋转》教案 ♛

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除下载)

1、口算

6÷515÷323÷7

1.2÷0.324÷231÷3

2、观察算式和结果并将算式分类.

除尽

除不尽

6÷5=1.215÷3=15

1.2÷0.3=424÷2=12

23÷7=3......2

31÷3=10......1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书:15÷3=515能被3整除

5、分类除尽

除不尽

不能整除

整除

6÷5=1.2

1.2÷0.3=4

15÷3=15

24÷2=12

23÷7=3......2

31÷3=10......1

二、探究新知

(一)进一步理解”整除“的意义.

1、整除所需的条件.

(1)分析:24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

6不能被5整除;(商是小数)

1.2不能被0.3整除;(被除数和除数都是小数)

(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数;

b、商是整数;

c、商后没有余数.

板书:整数整数整数(没有余数)

15÷3=5

2、用字母表示相除的两个数,理解整除的意义.

(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

(板书:a÷b)

学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

(板书:a能被b整除)

(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

3、反馈练习.

(1)下面的数,哪一组的第一个数能被第二个数整除?

29和336和121.2和0.4

(2)判断下面的说法是否正确,并说明理由.

a.36能被12整除.()

b.19能被3整除.()

c.3.2能被0.4整除.()

d.0能被5整除.()

e.29能整除29.()

4、”整除“与”除尽“的联系和区别.

讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

(举例说明)

(二)约数、倍数的意义

1、类推约数、倍数的意义.

(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

(2)学生口述:

24能被2整除,我们就说,24是2的倍数,2是24的约数.

10能被5整除,我们就说,10是5的倍数,5是10的约数.

a能被b整除,我们就说a是b的倍数,b是a的约数.

(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

2、进一步理解约数、倍数的意义.

(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

(2)约数和倍数相互依存的关系.

学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

(3)反馈练习:

A、下面各组数中,有约数和倍数关系的有哪些?

16和2140和2045和15

33和64和2472和8

B、判断下面说法是否正确.

a、8是2的倍数,2是8的约数.()

b、6是倍数,3是约数.()

c、30是5的倍数.()

d、4是历的约数.()

e、5是约数.()

3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

4、教学例2:12的约数有哪几个?

(1)引导学生合作学习,讨论分析.

(2)汇报、板书:

12的约数有:1、2、3、4、6、12

(3)练习:15的约数有哪几个?

(4)学生明确:

一个数的约数是有限的.其中最小的约数是1,的约数是它本身.

5、教学例3:2的倍数有哪些?

(1)引导学生合作学习,讨论、分析.

(2)汇报、板书:

2的倍数有:2、4、6、8、10......

(3)练习:2的倍数有哪些?

(4)学生明确:

一个数的倍数的个数是无限的,其中最小的倍数是它本身.

三、全课小结

这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

(板书课题:约数和倍数的意义)

四、随堂练习

1、下面的说法对吗?说出理由.

(1)因为36÷9=4,所以36是倍数,9是约数.

(2)57是3的倍数.

(3)1是1、2、3、4、5,...的约数.

2、下面的数,哪些是60的约数,哪些是6的倍数?

3412162460

教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

3、下面的说法对吗?为什么?

(1)1.8能被0.2除尽.()1.8能被0.2整除.()

1.8是0.2的倍数.()1.8是0.2的9倍.()

(2)若a÷b=10,那么:

a一定是b的倍数.()a能被b整除.()

b可能是a的约数.()a能被b除尽.()

五、布置作业

1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

101336

2、在下面的圈里填上适当的数.

♛ 人教版五年级下册数学《旋转》教案 ♛

教学目标:

1.通过教学,使学生初步理解同分母分数相加减的算理,掌握同分母分数加、减法的计算法则。

2.培养学生数形结合的数学思想,提高学生迁移类推的能力和计算能力。

3.培养学生规范书写和仔细计算的良好习惯。

重点难点:

理解同分母分数加、减法的算理和计算方法。

教学过程:

一、复习导入

1.填空。

(1)3/4的分数单位是( ),它有( )个这样的分数单位。

(2)( )个1/8是5/8,7/12里有( )个1/12。

(3)3个1/5是( ),4/7是4个( )。

2.谈话:我们在三年级已经学过同分母分数的加、减法,今天这节课,我们继续研究这个知识。

二、新课讲授

1.出示教材第89页例1。

(1)提问:观察图,从图中你都知道了哪些数学信息?(把一张饼平均分成8份,爸爸吃了3/8张饼,妈妈吃了1/8张饼,求爸爸和妈妈共吃了多少张饼)。

提问:求爸爸和妈妈共吃了多少张饼?怎样列式?为什么?

学生思考并回答:1/8+3/8,表示把这两个数合并起来,所以用加法。

提问:你能算出结果吗?怎样想的?

引导学生这样思考:1/8是1个1/8,3/8是3个1/8,合起来也就是4/8,提问:1/8+3/8的和是4/8,为什么分母没变?分子是怎样得到的?

(因为1/8和3/8的分母相同,也就是它们的分数单位相同,所以可以直接用两个分子相加,分母不变)。

板书:1/8+3/8=1+3/8=4/8=1/2

说明:计算的结果,能约分的要约成最简分数。

(2)提问:怎样计算同分母分数的加法。

小结:分数加法的含义与整数加法相同,都是表示把两个数合并成一个数的运算。在计算同分母分数加法时,分母不变,只把分子相加。

(3)即时练习

1/5+1/5

2/7+3/7

7/10+1/10

2.同分母分数减法。

文章来源://www.qx54.com/fayangao/134454.html

人教版五年级下册数学《旋转》教案相关文章

更多>