发言稿|数学定理的教案(集合十八篇)
发布时间:2020-04-09数学定理的教案(集合十八篇)。
■ 数学定理的教案
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC
例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:
听说能用向量证,咋么证呢?
三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,
|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证
■ 数学定理的教案
一、填空题(每空3分,共30分):
01、在直角△ABC中,斜边AB=2,则AB2+BC2+CA2=.
03、一个等腰三角形的两边为4cm,9cm,则它的周长为cm.
04、一块正方形土地的面积为800m2,则它的对角线长为m.
05、△ABC的三边长分别是15、36、39,这个△ABC是三角形.
07、三边之比为3:4:5的三角形的面积为24cm2,则它的周长为cm.
08、等腰三角形的腰长为10cm,底边长为12cm,则其底边上的高为cm.
09、△ABC中∠C=900,∠B=300,b=2cm,则c=cm.
10、如图,AB=AC=10cm,AD⊥BC,∠B=300,则BD2=.
12、在长为3,4,5,12,13的线段中任意取三条可构成个直角三角形.
13、两条直角边为6cm,8cm的直角三角形的斜边上的高为cm.
14、一个直角三角形的斜边比一条直角边多2cm,另一条直角边为6cm,则斜边的长为cm.
15、如图,AB=AC=10cm,CD⊥AB,∠B=150,则CD=cm.
三、解答题(共50分):
16、一块长方形土地ABCD的长为28m,宽为21m,小明站在长方形的一个顶点A上,他要走到对面的另
17、在正方体的一个顶点A处有一只蚂蚁,现在要向顶点B处爬行,已知正方体的棱长为3cm,BC=1cm,
18、有一块四边形草坪,∠B=∠D=900,AB=24m,BC=7m,CD=15m,求草坪面积.(8分)
19、小明想知道学校的旗杆有多高,他发现旗杆顶上的绳子BD垂到地面还多CD=1米,当他把绳子的
下端D拉开5米到后,发现下端D刚好接触地面A.你能帮他把旗杆的高度求出来吗?(10分)
20、圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食的最短路程是多少?(π≈3)(8分)
21、小琳家的楼梯有若干级梯子。她测得楼梯的水平宽度AC=4米,楼梯的斜面长度AB=5米,现在
她家要在楼梯面上铺设红地毯。若准备购买的地毯的单价为20元/米,则她家至少应准备多少钱?
■ 数学定理的教案
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
=4sina[(√3/2)2-sin2a]
=4sina(sin60°+sina)(sin60°-sina)
=4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]
=4cosa[cos2a-(√3/2)2]
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的`标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py
圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi.r2
圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l
弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r
锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
另外的记忆方法:
正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是“3倍”sinα, 无指的是减号, 四指的是“4倍”, 立指的是sinα立方
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
附推导:
首先,我们知道sin(a+b)=sina__cosb+cosa__sinb,sin(a-b)=sina__cosb-cosa__sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina__cosb
所以,sina__cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa__sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa__cosb-sina__sinb,cos(a-b)=cosa__cosb+sina__sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa__cosb
所以我们就得到,cosa__cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina__sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina__cosb=(sin(a+b)+sin(a-b))/2
cosa__sinb=(sin(a+b)-sin(a-b))/2
cosa__cosb=(cos(a+b)+cos(a-b))/2
sina__sinb=-(cos(a+b)-cos(a-b))/2
有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)__cos((x-y)/2)
sinx-siny=2cos((x+y)/2)__sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)__cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)__sin((x-y)/2)
■ 数学定理的教案
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题.
2.进一步加深性质定理与判定定理之间关系的认识.
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题.
2.难点:灵活应用勾股定理及逆定理解决实际问题.
3.难点的突破方法:
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.
四、例习题分析
例1(P83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.
解略.
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.
■ 数学定理的教案
随着社会的发展,新课程改革的不断深入,数学课已不仅是一些数学知识的学习,更重要的是体现知识的认知发展过程。教育的目的是培养具有独立思考能力、具有实践精神和创新能力的人。一堂好课应该是学生最大限度参与的课。《数学课程标准》中指出学生的数学学习应当是现实的、有意义的、富有挑战性的,内容要有利与学生主动进行观察、实验、猜想、验证、推理与交流。内容的呈现应采取不同的表达方式,以满足多样化的学习需求。数学活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
本节知识是在学生掌握了直角三角形的三个性质:直角三角形两锐角互余和30°所对的直角边等于斜边的一半以及在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°的基础上展开的。勾股定理是直角三角形的一个非常重要的性质,它揭示了一个直角三角形三边的数量关系,可解决直角三角形的许多有关的计算,是初三解直角三角形的主要依据之一,中考中的四边形和圆等综合题中也经常出现。贯穿了整个几何学习,更是数形结合的重要典范。更重要的是学生在探索定理的过程中,无论是课前准备和课上交流以及课下活动都让学生充分感受到学习、思考的重要性,与人合作的重要性以及数学在实际生活中的重要作用,是进行爱国教育的重要题材!
本节课的教育对象是初二下的学生,共性是思维活跃,参与意识较强。而且一般家庭都有电脑,对教师布置的网上作业也颇感兴趣,并能制作简单课件。形成了一定的数学学习习惯。
■ 数学定理的教案
我对本节课的教学过程是这样设计的:
1、欣赏图片,激发兴趣
通过欣赏xxxx年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。
接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。
2、分析探究,得出猜想
通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。
3、拼图证明,得出定理
先了解赵爽的证明思路,然后让学生利用学具自己剪拼,并利用图形进行证明。
由于难度比较大,组织学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。
4、反思归纳,总结升华
一是让学生自己回顾总结本节的收获。(当然多数为具体的知识和方法)。二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。
5、练习巩固
主要练习勾股定理的其它证明方法。
6、作业设计
请你利用网络资源,收集有关勾股定理的证明方法来进行学习。写出有关勾股定理知识的小论文。一个月过去了,我已忘记了这一项特殊的作业,但部分学生却写出了出乎意料的小论文。
通过这节课的两种不同的上法,以及学生的不同表现与收获,让我更深刻地认识到:
(1)新课改理念只有全面渗透到教育教学工作中,与平时工作紧密结合,才能够促进学生的全面发展;
(2)教师要充分利用课堂内容为整体课程目标服务,不要仅限于本节课的知识目标与要求,就知识“教”知识,而要通过知识的学习获得学习这些知识的方法,同时,还要充分利用课堂对学生进行情感态度价值观的教育,真正让教材成为教育学生的素材,而不是学科教学的全部;
(3)要相信学生的能力,为学生创造自我学习和创造的机会(如布置开放性的学习任务:数学实践活动、研究学习、写小论文等)。
我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩;不过,这样教师一定不会轻松。
■ 数学定理的教案
现在中考数学试题的难、中、易比例为公理、定理、推论尤为重要,它是解题的依据,同学们一定要记准、记牢。要明晰哪些定理有逆定理,哪些没有,哪些是可以直接运用的定理,哪些是我们在平时的学习过程中自己总结出来的正确的结论,而应用这些结论解客观题非常的简单,但却不能直接运用于主观题,必须经过证明才行。如:直角三角形中30度角所对的直角边等于斜边的一半。它的逆命题:直角三角形中如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度虽然是真命题但却不是定理,不能直接用于主观题。
注意细节,减少失误,突破三关。
审题关:审题要慢。数学题中有许多细节问题,是同学们极易失分的地方,在一些条件中经常设置“陷阱”,稍不注意就会掉进去。例如:在考查统计知识的题目中经常有补全图形的问题,需要注意题目要求补全的是什么统计图,是条形统计图,还是其他的'统计图,题中给出的数据是否完整。类似这样的问题需要同学们审题要仔细、找出题中的关键词,耐心地把题读完再解题。
计算关:计算要准。计算往往是许多同学失分最多的地方,特别是在数学卷的最后一题里设置三个或四个问,而第一个小问题通常是一个非常基础的问题。如:给出抛物线上的三个点的坐标,求抛物线的表达式,如果在计算上出现失误,可能会导致全盘皆输,丢掉的是十几分。这就不仅需要同学们的计算要认真,更要想办法避免这样的失误。
书写关:书写要规范。越是简单的试题越要注意书写的规范,不能“跳步”,特别是一些细节的问题,如:判断一条直线是圆的切线时要交代垂直、半径之后才能得到切线。这就需要同学们准确的把握定理的几何表达。
利用好错题。现阶段应该把自己以前做过的典型错题再重新做一遍,要反思其错因:哪些是知识上掌握得不到位,哪些是解题方法不当,哪些是计算上的失误等。现阶段各校都在做二轮复习,可以把易错题、相近题、多解题进行归纳、整理,在对比中强化记忆,减少因思维定式造成的失误。
■ 数学定理的教案
的余角相等。
2。对顶角相等。
3。三角形的一个外角等于和它不相邻的两个内角之和。
4。在同一平面内垂直于同一条直线的两条直线是平行线。
5。同位角相等,两直线平行。
底边上的高、底边上的中线互相重合。
7。直角三角形中,斜边上的中线等于斜边的一半。
8。在角平分线上的点到这个角的两边距离相等。及其逆定理。
9。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。
或两组对边分别相等、或对角线互相平分的四边形是平行四边形。
对角线相等的平行四边形是矩形。
对角线互相垂直,并且每一条对角线平分一组对角。
13。正方形的.四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。
两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。
的直径垂直于弦,并且平分弦所对的弧。
16。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。
17。相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。
18.圆内接四边形的对角互补,并且任何一个外角等于它的内对角。
19。切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
20。切线的性质定理①经过圆心垂直于切线的直线必经过切点。②圆的切线垂直于经过切点的半径。③经过切点垂直于切线的直线必经过圆心。
21。切线长定理从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。
22。弦切角定理弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。
23。相交弦定理;切割线定理;割线定理;
■ 数学定理的教案
重点、难点分析
本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.
本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.
教法建议:
本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:
(1)让学生主动提出问题
利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.
(2)让学生自己解决问题
判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.
(3)通过实际问题的解决,培养学生的数学意识.
教学目标:
1、知识目标:
(1)理解并会证明勾股定理的逆定理;
(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;
(3)知道什么叫勾股数,记住一些觉见的勾股数.
2、能力目标:
(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;
(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的纵横迁移感受数学的辩证特征.
教学重点:勾股定理的逆定理及其应用
教学难点:勾股定理的.逆定理及其应用
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习(投影)
勾股定理的内容
文字叙述(投影显示)
符号表述
图形(画在黑板上)
2、逆定理的获得
(1)让学生用文字语言将上述定理的逆命题表述出来
(2)学生自己证明
逆定理:如果三角形的三边长 有下面关系:
那么这个三角形是直角三角形
强调说明:(1)勾股定理及其逆定理的区别
勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.
(2)判定直角三角形的方法:
①角为 、②垂直、③勾股定理的逆定理
2、 定理的应用(投影显示题目上)
例1 如果一个三角形的三边长分别为
则这三角形是直角三角形
例2 如图,已知:CD⊥AB于D,且有
求证:△ACB为直角三角形。
以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)
4、课堂小结:
(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)
(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。
5、布置作业:
a、书面作业P131#9
b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8
求证:△DEF是等腰三角形
■ 数学定理的教案
教学目标
1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。
2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。
3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。
教学重点
了解勾股定理的由来,并能用它来解决一些简单的问题。
教学难点
勾股定理的探究以及推导过程。
教学过程
一、创设问题情景、导入新课
首先出示:投影1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示课件观察后回答:
1、观察图1—2,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即B的面积为______个单位。
正方形C中有_______个小方格,即C的面积为______个单位。
2、你是怎样得出上面的结果的?
3、在学生交流回答的基础上教师进一步设问:图1—2中,A,B,C面积之间有什么关系?学生交流后得到结论:A+B=C。
二、层层深入、探究新知
1、做一做
出示投影3(书中P3图1—3)
提问:(1)图1—3中,A,B,C之间有什么关系?(2)从图1—2,1—3中你发现什么?
学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。
2、议一议
图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?
(1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
(2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?
3、想一想
我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?
三、巩固练习。
1、在图1—1的问题中,折断之前旗杆有多高?
2、错例辨析:△ABC的两边为3和4,求第三边
解:由于三角形的两边为3、4
所以它的第三边的c应满足
=25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并未交待C是斜边。
综上所述这个题目条件不足,第三边无法求得
四、课堂小结
鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。
五、布置作业
■ 数学定理的教案
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
1、知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
2、过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的`合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
3、情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点
经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析 学情分析: 七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。 另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强. 教法分析: 结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式, 选择引导探索法。 把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。 三、教学过程设计 (一)创设情境,提出问题 (1)图片欣赏勾股定理数形图 1955年希腊发行美丽的勾股树 20xx年国际数学的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。 (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火? 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。 (二)实验操作模型构建 1、等腰直角三角形(数格子) 2、一般直角三角形(割补) 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系? 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。 问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流) 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。 通过以上实验归纳总结勾股定理。 设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。 (三)回归生活应用新知 让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。 (四)知识拓展巩固深化 基础题,情境题,探索题。 设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。 基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗? 设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维。 情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗? 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。 探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。 设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。 (五)感悟收获布置作业 这节课你的收获是什么? 作业: 1、课本习题2.1 2、搜集有关勾股定理证明的资料。 第十七章《勾股定理》数学活动教学设计 【教材分析】本节课是人教版义务教育课程标准试验教科书《数学》八年级下册第十七章 《勾股定理》中的数学活动,即通过“赵爽弦图”来进一步对勾股定理的证明。教学时数为1课时。勾股定理是直角三角形的重要性质,它把三角形有一个直角的“形”的特点,转化为三边之间的“数”的关系,它是数形结合的典范。 是初中数学教学内容重点之一。勾股定理可以解决许多直角三角形中的计算问题,是直角三角形特有的性质,在数学的发展和现实世界中有着广泛的作用.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值. 【学情分析】学生在以前学习和掌握了一般三角形的基本性质,现在将进一步学习一种特殊三角形-直角三角形的三边关系“勾股定理”。根据毕达哥拉斯定理的历史知识,讨论直角三角形的三边关系,可以激发学生的学习兴趣。 【教学目标】 知识和技能:1。理解和掌握勾股定理的内容和证明方法,能够运用勾股定理解决实际问题。 2了解毕达哥拉斯定理的文化背景,体验毕达哥拉斯定理的探索过程。 数学思维:在毕达哥拉斯定理的探索过程中,培养合理推理的能力,体验数形结合的思想。 解决问题:1。通过拼图活动体验数学思维的严谨性,发展形象思维。 2学会在**活动中与他人合作和交流的过程。 情感态度:1。通过对毕达哥拉斯定理历史的了解,增强学生的爱国情操,激发学生的学习兴趣。 2在**活动中,培养学生合作交流的意识和积极探索的精神 掌握勾股定理的内容。2、理解勾股定理的证明 三。用毕达哥拉斯定理解决具体问题。 【教学难点、关键】 利用“拼图”、“数形结合”的方法验证勾股定理. 【教学方法】观察法、小组讨论法、指导实践法、启发式教学法、**教学法。 【教学方法】三角法、拼图、多投影、课件 【教学过程设计】 学习目标: 1.通过拼图活动,培养学生的动手操作能力和空间想象能力,发展形象思维.在证明勾股定理过程中体会“出入相补”的思想,发展逻辑思维; 2了解毕达哥拉斯定理的历史,感受数学文化 教师活动 展示教学目标,板书题目:数学活动 学生活动 默读目标,明确任务1分钟 设计意图 多用**,展示学习目标,明确本班学习任务,坚持“先学后教”,边学边教的理念 自学指导: 1. 请同学们认真看课本36页活动1、活动2**的内容,并用4张全等的直角三角形纸片,拼出了一些与教科书上不同的图案,用自己拼出的图案证明了勾股定理 2. 由此你能得出什么结论? 8分钟后看谁做得又快又好,现在自学比赛开始。 教师活动 教师巡视指导自学 学生活动 学生拿出自己准备好的4张直角三角形纸,在桌上展示自己的拼图 设计意图 通过自学指导,让学生自主学习本课内容,并用拼图法验证毕达哥拉斯定理。 一、情境导入 展示2002年在北京召开了第24届国际数学家大会,被誉为数学界的“奥运会”,会徽的图案。 会标**的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就活动2来一同探索勾股定理. 2、实验操作 活动一学校需要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.请你应用勾股定理提出一个解决这个问题的方案,并与同伴交流. 教师活动 老师出示**和**老师的补充说明: 学生活动 学生观察**发表见解 设计意图 激发学生学习热情 活动二用四张全等的直角三角形纸片拼含有正方形的图案,要求拼图时直角三角形纸片不能互相重叠. 对这个命题的证明方法已有几百种之多。引导用拼图验证。 在独立思考的基础上,以群体为单位展开拼接。展示拼接过程。尝试证明。回答会徽问题。得出勾股定理。 教师活动 老师出示**和**老师的补充说明:这个图案是我国汉代数学家赵爽在证明勾 股定理时用到的,被称为“赵爽弦图”.在本次活动中,教师应关注 (1)学生对“赵爽弦图”及勾股定理的历史是否感兴趣; (2) 学生对毕达哥拉斯定理的理解 学生活动 学生观察**发表见解 设计意图 从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料. 从观察现实生活中常见的折叠和折叠入手,让学生感受到数学就在我们身边。我们可以通过特殊情况得出结论 1活动一让学生独立观察,培养独立思考的习惯和能力; 2通过探索和发现,学生可以获得成功的经验,激发他们进一步升迁的热情和愿望 活动3所有的直角三角形都有这样的特征吗?这就需要我们对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明方法已有几百种之多.下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的. (1) 用直角三角形abc的两个直角a和b作两个正方形。你能把它们剪下来拼成一个字符串图吗? (2)面积分别怎样表示?它们有什么关系呢? 在这项活动中,教师应注重: (1) 学生是否对拼图游戏感兴趣; (2) 学生能否合理划分; (3) 学生能否用语言准确地表达自己的观点 教师活动 教师提问,教师参加小组活动,倾听学生的交流,帮助学生完成拼图 学生活动 学生在独立思考的基础上,以小组为单位,开始拼接。学生展示分割和拼接的过程 设计意图 通过拼图活动,可以调动学生思维的积极性,为学生提供从事数学活动的机会,树立初步的空间概念,发展形象思维 通过拼图活动,使学生对定理有更深刻的理解,实现数学中数形结合的思想 通过**活动,调动学生的积极性,激发学生探求新知的欲望.给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性 活动五小结归纳自我评价 我们今天学习了什么?(引导学生回忆、归纳总结。)勾股定理 1.您的学习活动快乐吗? 2问问题时你是主动帮助别人还是接受别人的帮助? 你在这节课上学到了什么?你得到了什么? 教师活动教师进行补充、总结,备课 学生活动学生谈体会 设计意图 通过小结为学生创造交流的空间,调动学生的积极性,既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦. 安排学习评价目的是培养学生形成自我评价的能力,也让老师更好地了解学生对这一节课内容的掌握情况,从而获得更为真实的反馈信息。 作业:上网查阅毕达哥拉斯定理的历史资料,收集毕达哥拉斯定理的证明方法,下节课展示和交流 教师活动教师提出作业要求 学生活动学生按时完成作业 设计意图 作业分必做题和选做题,这样可以面向全体学生,让各层次的学生均有所得 课后思考,给学生留下继续学习的空间和兴趣 (一)创设情景 多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火? 问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。 (二)动手操作 ⒈课件出示课本P99图19.2.1: 观察图中用阴影画出的三个正方形,你从中能够得出什么结论? 学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。 ⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。 ⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。 (三)归纳验证 【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。 【验证】先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。 (四)问题解决 ⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。 ⒉自学课本P101例1,然后完成P102练习。 (五)课堂小结 1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。 2.教师用多媒体介绍“勾股定理史话” ①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。 ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。 目的是对学生进行爱国主义教育,激励学生奋发向上。 (六)布置作业 课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。 以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢! 勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。 据此,制定教学目标如下: 1、理解并掌握勾股定理及其证明。 2、能够灵活地运用勾股定理及其计算。 3、培养学生观察、比较、分析、推理的能力。 4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。 (一)教材地位 这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 1、知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。 2、过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。 3、情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。 (三)教学重点 经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。 教学难点:用面积法(拼图法)发现勾股定理。 突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。 二、教法与学法分析 学情分析: 七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。 另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强. 教法分析: 结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式, 选择引导探索法。 把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。 三、教学过程设计 (一)创设情境,提出问题 (1)图片欣赏勾股定理数形图 1955年希腊发行美丽的勾股树 20xx年国际数学的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。 (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火? 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。 (二)实验操作模型构建 1、等腰直角三角形(数格子) 2、一般直角三角形(割补) 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系? 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。 问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流) 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。 通过以上实验归纳总结勾股定理。 设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。 (三)回归生活应用新知 让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。 (四)知识拓展巩固深化 基础题,情境题,探索题。 设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。 基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗? 设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维。 情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗? 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。 探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。 设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。 (五)感悟收获布置作业 这节课你的收获是什么? 作业: 1、课本习题2.1 2、搜集有关勾股定理证明的资料。 《正弦定理》教案 一、教学内容分析 本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。 本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。 二、学情分析 对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。 三、设计思想: 培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。 四、教学目标: 1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。 2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。 3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。 五、教学重点与难点 教学重点:正弦定理的探索与证明;正弦定理的基本应用。 教学难点:正弦定理的探索与证明。 突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给于适当的提示和指导。 六、复习引入: 1、在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化? 2、在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗? 结论: 证明:过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 七、教学反思 本节是“正弦定理”定理的第一节,在备课中有两个问题需要精心设计。一个是问题的引入,一个是定理的证明。通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法。具体的'思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理。因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。 1、在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。 2、在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段。利用《几何画板》探究比值的值,由动到静,取得了很好的效果,加深了学生的印象。 3、由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避免此类问题,争取更大的进步。 一、教材分析 《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。 二、教学目标 根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标: 知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。 能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。 情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。 三、教学重难点 教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。 四、教法分析 依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。即指导学生掌握“观察——猜想——证明——应用”这一思维方法。学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。 五、教学过程 本节知识教学采用发生型模式: 1、问题情境 有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。求需要建多长的索道? 可将问题数学符号化,抽象成数学图形。即已知AC=1500m,∠C=450,∠B=300。求AB=? 此题可运用做辅助线BC边上的高来间接求解得出。 提问:有没有根据已提供的数据,直接一步就能解出来的方法? 思考:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。那我们能不能得到关于边、角关系准确量化的表示呢? 2、归纳命题 我们从特殊的三角形直角三角形中来探讨边与角的数量关系: 在如图Rt三角形ABC中,根据正弦函数的定义 一、教材分析 “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理,通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。 二、学情分析 我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。 三、教学目标 1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。 过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。 情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。 2、教学重点、难点 教学重点:正弦定理的发现与证明;正弦定理的简单应用。 教学难点:正弦定理证明及应用。 四、教学方法与手段 为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的`学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。 五、教学过程 为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程: 创设情景,揭示课题 问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢? 1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗? 问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。 [设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。 特殊入手,发现规律 问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗? 引导启发学生发现特殊情形下的正弦定理。 类比归纳,严格证明 问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗? [设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。 高中正弦定理教案<\/p> 高中数学正弦定理教学反思<\/p> 1.本节课虽然在教师的引导下,完成了教学任务,但是一味地为了完成任务而忽略了对学生正确思维的展开和引导.上好一堂课不仅有好的教学设计,还应有灵活应变的能力,只有从思想上真正转变为以学生的发展为根本,才不会为了进度而将学生强拉进自己事先设计好的轨道.正是教学有法,又无定法. 2.问题是思维的起点,是学生主动探索的动力.本节课通过对课本引例的解决、展开,引导学生在问题解决中发现结论.符合认识问题的思维规律,对激发学生探究问题兴趣是非常有益的. 3.正弦定理的证明方法很多,如利用三角形的面积公式、利用三角形的外接圆、利用向量证明等,本节课将斜三角形的边角关系转化为直角三角形的边角关系导出正弦定理,从学生的“最近发展区”入手去设计问题,思路自然,是学生们易于接受的一种证明方法.但在具体的推导时,要注意尊重学生思维的发展的过程,这是一种理念,也是一种能力. 4.在教学中恰当地利用多媒体技术,是突破教学难点的一个重要手段.本节课利用《几何画板》探究比值的值,由动到静,取得了很好的效果.而课下学生问,∠A是钝角的情形怎么证明呢?于是我将这一问题给学生留作思考题,即“你能否将∠A是钝角的情形转化为锐角的情形呢?” 在教学设计和课堂教学中应充分了解学生、研究学生,备课不仅是备知识,更重要的是备学生.作为教师只有真正树立以学生的发展为本的教学理念,才能尊重学生思维过程的发生、发展,才能从学生的生活经验和已有知识背景出发,创设合理的教学情境,才能为学生提供充分的数学活动和交流的机会,使学生从单纯的知识接受者转变为数学学习的主人. 高中数学正弦定理教案,一起拉看看吧。 本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力. 本节课以及后面的解三角形中涉及到计算器的使用与近似计算,这是一种基本运算能力,学生基本上已经掌握了.若在解题中出现了错误,则应及时纠正,若没出现问题就顺其自然,不必花费过多的时间. 本节可结合课件“正弦定理猜想与验证”学习正弦定理. 三维目标 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法,会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题. 2.通过正弦定理的探究学习,培养学生探索数学规律的思维能力,培养学生用数学的方法去解决实际问题的能力.通过学生的积极参与和亲身实践,并成功解决实际问题,激发学生对数学学习的热情,培养学生独立思考和勇于探索的创新精神. 重点难点 教学重点:正弦定理的证明及其基本运用. 教学难点:正弦定理的探索和证明;已知两边和其中一边的对角解三角形时,判断解的个数. 课时安排 1课时 教学过程 导入新课 思路1.教师可先通过直角三角形的特殊性质引导学生推出正弦定理形式,如Rt△ABC中的边角关系,若∠C为直角,则有a=csinA,b=csinB,这两个等式间存在关系吗?学生可以得到asinA=bsinB,进一步提问,等式能否与边c和∠C建立联系?从而展开正弦定理的探究. 思路2.如图,某农场为了及时发现火情,在林场中设立了两个观测点A和B,某日两个观测点的林场人员分别测到C处有火情发生.在A处测到火情在北偏西40°方向,而在B处测到火情在北偏西60°方向,已知B在A的正东方向10千米处.现在要确定火场C距A、B多远?将此问题转化为数学问题,即“在△ABC中,已知∠CAB=130°,∠CBA=30°,AB=10千米,求AC与BC的长.”这就是一个解三角形的问题.为此我们需要学习一些解三角形的必要知识,今天要探究的是解三角形的第一个重要定理——正弦定理,由此展开新课的探究学习. 推进新课 新知探究 提出问题 1阅读本章引言,明确本章将学习哪些内容及本章将要解决哪些问题? 2联想学习过的三角函数中的边角关系,能否得到直角三 角形中角与它所对的边之间在数量上有什么关系? 3由2得到的数量关系式,对一般三角形是否仍然成立? 4正弦定理的内容是什么,你能用文字语言叙述它吗?你能用哪些方法证明它? 5什么叫做解三角形? 6利用正弦定理可以解决一些怎样的三角形问题呢? 活动:教师引导学生阅读本章引言,点出本章数学知识的某些重要的实际背景及其实际需要,使学生初步认识到学习解三角形知识的必要性.如教师可提出以下问题:怎样在航行途中测出海上两个岛屿之间的距离?怎样测出海上航行的轮船的航速和航向?怎样测量底部不可到达的建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度?这些实际问题的解决需要我们进一步学习任意三角形中边与角关系的有关知识.让学生明确本章将要学习正弦定理和余弦定理,并学习应用这两个定理解三角形及解决测量中的一些问题. 关于任意三角形中大边对大角、小 边对小角的边角关系,教师引导学生探究其数量关系.先观察特殊的直角三角形.如下图,在Rt△ABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有ac=sinA,bc=sinB,又sinC=1=cc,则asinA=bsinB=csinC=c.从而在Rt△ABC中,asinA=bsinB=csinC. 那么对于任意的三角形,以上关系式是否仍然成立呢?教师引导学生画图讨论分析. 如下图,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角的三角函数的定义,有CD=asinB=bsinA,则asinA=bsinB.同理,可得csinC=bsinB.从而asinA=bsinB=csinC. 通过上面的讨论和探究,我们知道在任意三角形中,上述等式都成立.教师点出这就是今天要学习的三角形中的重要定理——正弦定理. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 asinA=bsinB=csinC 上述的探究过程就是正弦定理的证明方法,即分直角三角形、锐角三角形、钝角三角形三种情况进行证明.教师提醒学生要掌握这种由特殊到一般的分类证明思想,同时点拨学生观察正弦定理的特征.它指出了任意三角形中,各边与其对应角的正弦之间的一个关系式.正弦定理的重要性在于它非常好地描述了任意三角形中边与角的一种数量关系;描述了任意三角形中大边对大角的一种准确的数量关系.因为如果∠A<∠B,由三角形性质,得a<b.当∠A、∠B都是锐角,由正弦函数在区间上的单调性,可知sinA<sinB.当∠A是锐角,∠B是钝角时,由于∠A+∠B<π,因此∠B<π-∠A,由正弦函数在区间上的单调性,可知sinB>sin=sinA,所以仍有sinA<sinB. 正弦定理的证明方法很多,除了上述的证明方法以外,教师鼓励学生课下进一步探究正弦定理的其他证明方法. 讨论结果: ~略. 已知三角形的几个元素求其他元素的过程叫做解三角形. 应用正弦定理可解决两类解三角形问题:①已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边,即“两角一边问题”.这类问题的解是唯一的.②已知三 角形的任意两边与其中一边的对角,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和 角,即“两边一对角问题”.这类问题的答案有时不是唯一的,需根据实际情况分类讨论. 应用示例 例1在△ABC中,已知∠A=32.0°,∠B=81.8°,a=42.9 cm,解此三角形. 活动:解三角形就是已知三角形的某些边和角,求其他的边和角的过程,在本例中就是求解∠C,b,c. 此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边b,若求边c,则先求∠C,再利用正弦定理即可. 解:根据三角形内角和定理,得 ∠C=180°-=180°-=66.2°. 根据正弦定理,得 b=asinBsinA=42.9sin81.8°sin32.0°≈80.1; c=asinCsinA=42.9sin66.2°sin32.0°≈74.1. 点评:此类问题结果为唯一解,学生较易掌握,如果已知两角及两角所夹的边,也是先利用三角形内角和定理180°求出第三个角,再利用正弦定理. 大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。 一、教材分析 本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的'联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。 根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标: 认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。 情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。 教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:已知两边和其中一边的对角解三角形时判断解的个数。 二、教法 根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。 三、学法 指导学生掌握“观察――猜想――证明――应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。 “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。 激发学生思维,从自身熟悉的特例入手进行研究,发现正弦定理。 提问:那结论对任意三角形都适用吗? 在三角形中,角与所对的边满足关系 注意:1.强调将猜想转化为定理,需要严格的理论证明。 2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。 3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。 1.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。 2.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。 1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形. 例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。 2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形. 例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中 一边的对角时解三角形的各种情形。完了把时间交给学生。 1.在△ABC中,已知下列条件,解三角形. A=45°,C=30°,c=10cm A=60°,B=45°,c=20cm 2. 在△ABC中,已知下列条件,解三角形. a=20cm,b=11cm,B=30° c=54cm,b=39cm,C=115° 学生板演,老师巡视,及时发现问题,并解答。 1.它表述了三角形的边与对角的正弦值的关系。 2.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。 3.会用向量作为数形结合的工具,将几何问题转化为代数问题。 正弦定理证明 1.三角形的正弦定理证明: 步骤1. 在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a・sinB CH=b・sinA ∴a・sinB=b・sinA 得到 a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC 步骤2. 证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R a/SinA=BC/SinD=BD=2R 类似可证其余两个等式。 2.三角形的余弦定理证明: 平面几何证法: 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=^2+^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=/2ac 3 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。 过A作AD⊥BC于D,则BD+CD=a 由勾股定理得: c^2=^2+^2,^2=b^2-^2 所以c^2=^2-^2+b^2 =^2-^2+b^2 =a^2-2a*CD +^2-^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。 2 谈正、余弦定理的多种证法 聊城二中 魏清泉 正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合. 定理:在△ABC中,AB=c,AC=b,BC=a,则 c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A. 一、正弦定理的证明 证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=bsin∠BCA, BE=csin∠CAB, CF=asin∠ABC。 所以S△ABC=abcsin∠BCA =bcsin∠CAB =casin∠ABC. 证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=bsin∠BCA=csin∠ABC, BE=asin∠BCA=csin∠CAB。 证法三:如图2,设CD=2r是△ABC的外接圆 的直径,则∠DAC=90°,∠ABC=∠ADC。 证法四:如图3,设单位向量j与向量AC垂直。 因为AB=AC+CB, 所以jAB=j=jAC+jCB. 因为jAC=0, jCB=| j ||CB|cos=asinC, jAB=| j ||AB|cos=csinA . 二、余弦定理的.证明 法一:在△ABC中,已知 ,求c。 过A作 , 在Rt 中, , 法二: ,即: 法三: 先证明如下等式: ⑴ 证明: 故⑴式成立,再由正弦定理变形,得 结合⑴、有 即 . 同理可证 . 三、正余弦定理的统一证明 法一:证明:建立如下图所示的直角坐标系,则A=、B=,又由任意角三角函数的定义可得:C=,以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B, ∴C′,asin)=C′. 根据向量的运算: =, = - =, 由 = :得 asin B=bsin A,即 = . 同理可得: = . ∴ = = . 由 =2+2=b2+c2-2bccos A, 又| |=a, ∴a2=b2+c2-2bccos A. 同理: c2=a2+b2-2abcos C; b2=a2+c2-2accos B. 法二:如图5, ,设 轴、轴方向上的单位向量分别为 、,将上式的两边分别与 、作数量积,可知 , 即 将式改写为 化简得b2-a2-c2=-2accos B. 一、说教材分析 “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察――猜想――证明――应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。 二、说学情分析 我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。 三、说教学目标 1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。 过程与方法:学生参与解题方案的探索,尝试应用观察――猜想――证明――应用“等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。 情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立”数学与我有关,数学是有用的,我要用数学,我能用数学“的理念。 2、教学重点、难点 教学重点:正弦定理的发现与证明;正弦定理的简单应用。 教学难点:正弦定理证明及应用。 四、说教学方法与手段 为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用”问题教学法“,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。 五、说教学过程 为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程: (一)创设情景,揭示课题 问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢? 1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗? 问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》) 引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。 (二)特殊入手,发现规律 问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在RtSABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗? 引导启发学生发现特殊情形下的正弦定理 (三)类比归纳,严格证明 问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的RtSABC不小心写成了锐角SABC,其它没有变,你说这个结论还成立吗? 此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。 问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角SABC改为角钝角SABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。) 放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的'同学有个参考,不至于闲呆着浪费时间。 问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容) 教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发z940―998{首先发现与证明的。中亚细亚人阿尔比鲁尼z973―1048{给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在10以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。 (四)强化理解,简单应用 下面请大家看我们的教材2―3页到例题1上边,并自学解三角形定义。 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。 我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题: 问题7:(教材例题1)SABC中,已知A=30?,B=75?,a=40cm,解三角形。 (本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评) 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。 强化练习 让全体同学限时完成教材4页练习第一题,找两位同学上黑板。 问题8:(教材例题2)在SABC中a=20cm,b=28cm,A=30?,解三角形。 例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》 (五)小结归纳,深化拓展 1、正弦定理 2、正弦定理的证明方法 3、正弦定理的应用 4、涉及的数学思想和方法。 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。 (六)布置作业,巩固提高 1、教材10页习题1、1A组第1题。 2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。 证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。 1正弦定理 2证明方法: 3 利用正弦定理能够解决两类问题: (1)平面几何法 (1)已知两角和一边 (2)向量法 (2)已知两边和其中一边的对角 例题 板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。 正弦定理说课稿 正弦定理说课稿 尊敬的各位专家、评委: 大家好! 一、教材分析 “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理,通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。 二、学情分析 我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。 三、教学目标 1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。 过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。 情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。 2、教学重点、难点 教学重点:正弦定理的发现与证明;正弦定理的简单应用。 教学难点:正弦定理证明及应用。 四、教学方法与手段 为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。 五、教学过程 为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程: 创设情景,揭示课题 问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢? 1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗? 问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。 [设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。 特殊入手,发现规律 问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗? 引导启发学生发现特殊情形下的正弦定理 类比归纳,严格证明 问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗? [设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。 问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。 [设计说明] 放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的.同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。 问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理 教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔—威发[940-998]首先发现与证明的。中亚细亚人阿尔比鲁尼[973-1048]给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在10以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。 [设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。 强化理解,简单应用 下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。 [设计说明] 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。 我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题: 问题7:⊿ABC中,已知A=30º,B=75º,a=40cm,解三角形。 [设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。 强化练习 让全体同学限时完成教材4页练习第一题,找两位同学上黑板。 问题8:在⊿ABC中a=20cm,b=28cm,A=30º,解三角形。 尊敬的各位专家、评委: 大家好! 一、教材分析 “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理,通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。 二、学情分析 我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。 三、教学目标 1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。 过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。 情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。 2、教学重点、难点 教学重点:正弦定理的发现与证明;正弦定理的简单应用。 教学难点:正弦定理证明及应用。 四、教学方法与手段 为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。 五、教学过程 为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程: 创设情景,揭示课题 问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢? 1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗? 问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题,其实并不难,只要你学好本章内容即可掌握其原理。 [设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。 特殊入手,发现规律 问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在rt⊿abc中sina=,sinb= ,sinc= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗? 引导启发学生发现特殊情形下的正弦定理 类比归纳,严格证明 问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的rt⊿abc不小心写成了锐角 ⊿abc,其它没有变,你说这个结论还成立吗? [设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。 问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿abc改为角钝角⊿abc,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。 [设计说明]放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。 问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理 教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的.老师了。当然,老师的希望能否变成现实,就要看大家的了。 [设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。 强化理解,简单应用 下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。 [设计说明]让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。 我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题: 问题7:⊿abc中,已知a=30,b=75,a=40cm,解三角形。 [设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。 强化练习 让全体同学限时完成教材4页练习第一题,找两位同学上黑板。 问题8:在⊿abc中a=20cm,b=28cm,a=30,解三角形。 [设计说明]例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》 小结归纳,深化拓展 1、正弦定理 2、正弦定理的证明方法 3、正弦定理的应用 4、涉及的数学思想和方法。 [设计说明] 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。 布置作业,巩固提高 1、教材10页习题1.1a组第1题。 2、学有余力的同学探究10页b组第1题,体会正弦定理的其他证明方法。 证明:设三角形外接圆的半径是r,则a=2rsina,b=2rsinb, c=2rsinc [设计说明] 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。 向量证明正弦定理 表述:设三面角∠P-ABC的三个面角∠BPC,∠CPA,∠APB所对的二面角依次为∠PA,∠PB,∠PC,则 Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。 目录 1证明2全向量证明 证明 过A做OA⊥平面BPC于O。过O分别做OM⊥BP于M与ON⊥PC于N。连结AM、AN。 显然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。 另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。 则Sin∠PB/Sin∠CPA=AO×AP/=Sin∠PC/Sin∠APB。 同理可证Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得证三面角正弦定理。 全向量证明 如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C 在向量等式两边同乘向量j,得・ j・AC+CB=j・AB ∴│j││AC│cos90°+│j││CB│cos ∴asinC=csinA ∴a/sinA=c/sinC 同理,过点C作与向量CB垂直的单位向量j,可得 c/sinC=b/sinB ∴a/sinA=b/sinB=c/sinC 2步骤1 记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c =i・a+i・b+i・c =a・cos)+b・0+c・cos =-asinC+csinA=0 接着得到正弦定理 其他 步骤2. 在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a・sinB CH=b・sinA ∴a・sinB=b・sinA 得到a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC 步骤3. 证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 3 用向量叉乘表示面积则 s = CB 叉乘 CA = AC 叉乘 AB =>absinC = bcsinA =>a/sinA = c/sinC -7-18 17:16 jinren92 | 三级 记向量i ,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理 其他步骤2. 在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC, 4 过三角形ABC 的顶点A作BC边上的高,垂足为D.当D落在边BC上时,向量AB 与向量AD 的夹角为90°-B ,向量AC 与向量AD 的`夹角为90°-C ,由于向量AB、向量AC 在向量AD 方向上的射影相等,有数量积的几何意义可知 向量AB*向量AD=向量AC*向量AD即 向量AB的绝对值*向量AD的绝对值*COS=向量的AC绝对值*向量AD的绝对值*cos所以 csinB=bsinC即b/sinB=c/sinC当D落在BC的延长线上时,同样可以证得 《正弦定理 》教学反思 本节课是“正弦定理”教学的第二节课,其主要任务是通过对正弦定理的进一步理解,明确它在“已知三角形的两边及一边所对的角解三角形”方面的应用和运用正弦定理的变式来求三角形中的角和判断三角形的形状。 在知识目标方面:通过创设适宜的数学情境,引导鼓励学生大胆地提出问题、引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问推向深入。通过问题的提出、解题方法的探索、到问题的解决、方法的总结、及练习题中方法的应用,都能紧抓公式及公式的变式,运用从特殊到一般、再从一般到特殊的思想方法达成知识目标。通过练习及六个变式问题调动学生的学习热情,进而采用“正弦定理”、“大边对大角”、“三角形内角和定理”、“数形结合”等知识与方法有效突破本节课的教学难点。使学生明白这一类数学问题该怎样解,让学生做到“学会数学,会学数学” 在能力目标方面:通过例题、练习及六个变式问题,培养学生观察、归纳、概括新知识的能力; 通过“故意出错”,让学生“质疑”、“找错”、“改错”,从而使学生的思维具有批判性,优化他们的思维品质; 通过课后练习及课后思考,进一步培养学生的数学意识,解决数学问题的能力。 在情感态度与价值观方面:本节课也很注重对学生非智力因素的培养,注重情感交流与情感的建立与培养。并在教学过程中做到:与学生真诚相处、平等交流;依据自己的个人特点采取适当的'方法与技巧,注重充分发挥教师的个人人格魅力,而非千篇 一律的“柔声细语”;能借助信息技术及其它手段,营造一种氛围,一种情境,通过“课前音乐背景”的设置,“课堂上的掌声鼓励”“形体语言与语言艺术”的运用等,力争营造一种愉快、轻松的氛围,创建一个有助于师生,生生思维交流的“情感场”,使数学教学更具有生命力,感染力。使学生在感悟数学的过程中感受数学的魅力,体验数学产生的美感与幸福感。 通过这节课的学习,不仅复习巩固了旧知识,使学生掌握了新的有用的知识,体会联系、发展等辩证观点,而且培养了学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。 一、教材分析 正弦定理是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边长与角度之间的数量关系,提出两个实际问题,并指出解决问题的关键在于研究三角形中的边、角关系,从而引导学生产生探索愿望,激发学生学习的兴趣。在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的'问题: 已知两角和一边,解三角形: 已知两边和其中一边的对角,解三角形。 二、学情分析 本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。高一学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。 根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。 三、教学目标 1.知识与技能: 引导学生发现正弦定理的内容,探索证明正弦定理的方法; 简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题 2.过程与方法: 通过对定理的探究,培养学生发现数学规律的思维方法与能力;通过对定理的证明和应用,培养学生独立解决问题的能力和体会分类讨论和数形结合的思想方法. 3.情感、态度与价值观: 通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识; 通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值,不断提高自身的文化修养. 四、教学重点、难点 教学重点: 1.正弦定理的推导. 2.正弦定理的运用 教学难点:1.正弦定理的推导. 2.正弦定理的运用. 五、学法与教法 学法与教学用具 学法:开展“动脑想、严格证、多交流、勤设问”的研讨式学习方法,逐渐培 养学生“会观察”、“会类比”、“会分析”、“会论证”的能力, 教学用具:电脑、多媒体。 教法:运用“发现问题—自主探究—尝试指导—合作交流”的教学模式 整堂课围绕“一切为了学生发展”的教学原则,突出:①动——师生互动、共同探索;②导——教师指导、循序渐进。 新课引入——提出问题, 激发学生的求知欲。 掌握正弦定理的推导证明——分类讨论,数形结合,动脑思考,由特殊到一般,组织学生自主探索,获得正弦定理及证明过程。 例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识。 巩固练习——深化对正弦定理的理解,并结合辽宁数学高考理科17题文科18题,巩固新知。 本节是“正弦定理”定理的`第一节,在备课中有两个问题需要精心设计.一个是问题的引入,一个是定理的证明.通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法.具体的思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理.因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。 1.在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。 2.在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段.利用《几何画板》探究比值的值,由动到静,取得了很好的效果,加深了学生的印象. 3.由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避免此类问题,争取更大的进步。 正弦定理证明方法 方法1:用三角形外接圆 证明: 任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的'圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 ∴a/sinA=b/sinB=c/sinC=2R 方法2: 用直角三角形 证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a・sinB CH=b・sinA ∴a・sinB=b・sinA 得到a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC 在直角三角形中,在钝角三角形中。 方法3:用向量 证明:记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i =i・a+i・b+i・c =a・cos)+0+c・cos=-asinC+csinA=0 ∴a/sinA =c/sinC 方法4:用三角形面积公式 证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a・sinB,BE= c sinA,由三角形面积公式得:AB・CD=AC・BE 即c・a・sinB= b・c sinA ∴a/sinA=b/sinB 同理可得b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2 =[2-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC 证明如下:在三角形的外接圆里证明会比较方便 例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到: 角A=角D 得到:2RsinA=BC 同理:2RsinB=AC,2RsinC=AB 这样就得到正弦定理了 2 一种是用三角证asinB=bsinA 用面积证 用几何法,画三角形的外接圆 听说能用向量证,咋么证呢? 三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为,j与向量CA夹角为,设AB=c,BC=a,AC=b, 因为AB+BC+CA=0 即j*AB+J*BC+J*CA=0 |j||AB|cos90+|j||BC|cos+|j||CA|cos=0 所以asinB=bsinA 3 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2 =[2-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2 =[2-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 4 满意答案 好评率:100% 正弦定理 步骤1. 在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a・sinB CH=b・sinA ∴a・sinB=b・sinA 得到 a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC 步骤2. 证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 余弦定理 平面向量证法: ∵如图,有a+b=c ∴c^2=a・a+2a・b+b・b∴c^2=a^2+b^2+2|a||b|Cos 又∵Cos=-CosC ∴c^2=a^2+b^2-2|a||b|Cosθ 再拆开,得c^2=a^2+b^2-2*a*b*CosC 同理可证其他,而下面的CosC=/2ab就是将CosC移到左边表示一下。 平面几何证法: 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=^2+^2 b^2=sinB・c+a^2+cosB・c^2-2ac*cosB b^2=*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=/2ac 正弦定理的证明 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2 =[2-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC 证明如下:在三角形的外接圆里证明会比较方便 例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到: 角A=角D 得到:2RsinA=BC 同理:2RsinB=AC,2RsinC=AB 这样就得到正弦定理了 2 一种是用三角证asinB=bsinA 用面积证 用几何法,画三角形的外接圆 听说能用向量证,咋么证呢? 三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为,j与向量CA夹角为,设AB=c,BC=a,AC=b, 因为AB+BC+CA=0 即j*AB+J*BC+J*CA=0 |j||AB|cos90+|j||BC|cos+|j||CA|cos=0 所以asinB=bsinA 3 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2 =[2-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2 =[2-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 4 满意答案 好评率:100% 步骤1. 在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a・sinB CH=b・sinA ∴a・sinB=b・sinA 得到 a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC 步骤2. 证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为直径所对的.圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 余弦定理 平面向量证法: ∵如图,有a+b=c ∴c^2=a・a+2a・b+b・b∴c^2=a^2+b^2+2|a||b|Cos 又∵Cos=-CosC ∴c^2=a^2+b^2-2|a||b|Cosθ 再拆开,得c^2=a^2+b^2-2*a*b*CosC 同理可证其他,而下面的CosC=/2ab就是将CosC移到左边表示一下。 平面几何证法: 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=^2+^2 b^2=sinB・c+a^2+cosB・c^2-2ac*cosB b^2=*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=/2ac 尊敬的各位专家、评委: 大家好! 我是**县**中学数学教师xxx,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。 一、教材分析 ”解三角形“既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课”正弦定理“,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从”实际问题“抽象成”数学问题“的建模过程中,体验 ”观察——猜想——证明——应用“这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和”用数学“的意识。 二、学情分析 我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对”一些重要的数学思想和数学方法“的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。 三、教学目标 1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。 过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。 情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。 2、教学重点、难点 教学重点:正弦定理的发现与证明;正弦定理的简单应用。 教学难点:正弦定理证明及应用。 四、教学方法与手段 为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。 五、教学过程 为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程: (一)创设情景,揭示课题 问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢? 1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗? 问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》) 引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。 (二)特殊入手,发现规律 问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗? 引导启发学生发现特殊情形下的正弦定理 (三)类比归纳,严格证明 问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗? 此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。 问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。) 放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。 问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容) 教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940—998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973—1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在10以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的.老师了。当然,老师的希望能否变成现实,就要看大家的了。 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。 (四)强化理解,简单应用 下面请大家看我们的教材2—3页到例题1上边,并自学解三角形定义。 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。 我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题: 问题7:(教材例题1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。 (本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评) 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。 强化练习 让全体同学限时完成教材4页练习第一题,找两位同学上黑板。 问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。 例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》 (五)小结归纳,深化拓展 1、正弦定理 2、正弦定理的证明方法 3、正弦定理的应用 4、涉及的数学思想和方法。 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。 (六)布置作业,巩固提高 1、教材10页习题1。1A组第1题。 2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。 证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。 一、教材分析 1、教材地位和作用 在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4,学生也学习了三角函数、平面向量等内容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。依据教材的上述地位和作用,我确定如下教学目标和重难点 2、教学目标 (1)知识目标: ①引导学生发现正弦定理的内容,探索证明正弦定理的方法; ②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。 (2)能力目标: ①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。 ②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。 (3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。 3、教学的重、难点 教学重点:正弦定理的内容,正弦定理的证明及基本应用; 教学难点:正弦定理的探索及证明; 教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段 二、教学方法与手段 1、教学方法 教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。 2、学法指导 学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。 学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。 3、教学手段 利用多媒体展示图片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。 下面我讲解如何运用上述教学方法和手段开展教学过程 三、教学过程设计 教学流程: 引出课题 引出新知 归纳方法 巩固新知 布置作业 四、总结分析: 现代教育心理学的研究认为,有效的性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了: ㈠在学生已有知识结构和新性质概念间寻找“最近发展区”, ㈡引导学生通过同化,顺应掌握新概念。 ㈢设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程” 的新天地。 我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合﹑学用结合”原则。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用. 设计意图:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。 谢谢!■ 数学定理的教案
■ 数学定理的教案
■ 数学定理的教案
■ 数学定理的教案
■ 数学定理的教案
篇1:《正弦定理》教案<\/h2>
篇2:高中数学正弦定理教案<\/h2>
篇3:高中数学正弦定理教案<\/h2>
篇4:高中数学正弦定理教案<\/h2>
篇5:高中数学《正弦定理》教案<\/h2>
篇6:《正弦定理》说课稿<\/h2>
篇7:正弦定理证明<\/h2>
篇8:《正弦定理》说课稿<\/h2>
篇9:正弦定理说课稿<\/h2>
篇10:正弦定理说课稿<\/h2>
篇11:正弦定理说课稿怎么写<\/h2>
篇12:向量证明正弦定理<\/h2>
篇13:《正弦定理 》教学反思<\/h2>
篇14:《正弦定理、余弦定理》说课稿<\/h2>
篇15:正弦定理教学反思<\/h2>
篇16:正弦定理证明方法<\/h2>
篇17:正弦定理的证明<\/h2>
篇18:正弦定理的证明<\/h2>
篇19:高中数学《正弦定理》说课稿<\/h2>
篇20:高中数学《正弦定理》说课稿<\/h2>
