群学网

导航栏

×
你的位置: 群学网 >发言稿 >导航

发言稿|数据挖掘工作总结(集锦十三篇)

发布时间:2023-06-13

数据挖掘工作总结(集锦十三篇)。

● 数据挖掘工作总结

(1)分析需求,完成相关数据抽取、数据清洗、数据探索、数据建模分析等工作;

(2)按要求完成数据分析报告、建模报告、数据报表等;

(3)对数据进行深度挖掘和建模,做运营和用户等各方面分析,深度挖掘运营优化和用户行为特征等,推动分析问题的解决,为业务决策提供日常支持;

(4)与业务部门和技术部门对接,完成设计,编写,维护和完善公司业务相关的`算法。

(5)参与项目成果汇编,对相关结果进行解读和汇报。

● 数据挖掘工作总结

1、新产品涂装工艺的开发,按照客户要求开发涂料涂装,治具的设计方案确认

2、工艺条件的确认SOP文件的制订

3、新产品的试制,产品的持续改进,工艺条件调整,合格率提升

4、工程设变的变更,工艺、制程文件的制订及检查,满足生产所需技术条件的资料确认,查检表单

5、对涂装车间的改善,环保工作归口管理,车间环境监控

6、涂装设备改进及监控,品质问题的解决与改善,对现场出现不良进行改善,涂装线现场工艺员能力培养与提升,提升涂装整体技术水平。

7、负责涂装线整体的VE项目,降低涂装成本,与设备人员共同制定涂装线的'保养计划,并制定相应的执行标准

8、负责涂装工程师的培养与工作执行状况的监督、指导,新产品涂装工艺的开发,按照客户要求开发涂料

● 数据挖掘工作总结

1,数据挖掘

数据挖掘(DataMining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。这些数据可以是结构化的,如关系数据库中的数据,也可以是半结构化的,如文本,图形,图像数据,甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的,可以是演绎的,也可以是归纳的。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以进行

数据自身的维护。数据挖掘借助了多年来数理统计技术和人工智能以及知识工程等领域的研究成果构建自己的理论体系,是一个交叉学科领域,可以集成数据数据库、人工智能、数理统计、可视化、并行计算等技术。2,数据挖掘技术

数据挖掘就是对观测到的数据集进行分析,目的是发现未知的关系和以数据拥有者可以理解并对其有价值的新颖方式来总结数据。它利用各种分析方法和分析工具在大规模海量数据中建立模型和发现数据间关系的过程,这些模型和关系可以用来做出决策和预测。

数据挖掘的过程就是知识发现的过程,其所能发现的知识有如下几种:广义型知识,反映同类事物共同性质的知识;特征型知识,反映事物各方面的特征知识;差异型知识,反映不同事物之间属性差别的知识;关联型知识,反映事物之间依赖或关联的知识;预测型知识,根据历史的和当前的数据推测未来数据;偏离型知识,揭示事物偏离常规的异常现象。所有这些知识都可以在不同的概念层次上被发现,随着概念树的提升,从微观到中观再到宏观,以满足不同用户、不同层次决策的需要。

数据挖掘是涉及数据库、人工智能、数理统计、机械学、人工神经网络、可视化、并行计算等的交叉学科,是目前国际上数据库和决策支持领域的最前沿的研究方向之一。

3,数据挖掘的功能

数据挖掘通过预测未来趋势及行为,做出预测性的、基于知识的决策。数据挖掘的目标是从数据库中发现隐含的、有意义的知识,按其功能可分为以下几类。

3.1关联分析(AssociationAnalysis)

关联分析能寻找到数据库中大量数据的相关联系,常用的一种技术为关联规则和序列模式。关联规则是发现一个事物与其他事物间的相互关联性或相互依赖性。

3.2聚类

输入的数据并无任何类型标记,聚类就是按一定的规则将数据划分为合理的集合,即将对象分组为多个类或簇,使得在同一个簇中的对象之间具有较高的相似度,而在不同簇中的对象差别很大。聚类增强了人们对客观现实的认识,是概念描述和偏差分析的先决条件。聚类技术主要包括传统的模式识别方法和数学分类学。

3.3自动预测趋势和行为

数据挖掘自动在大型数据库中进行分类和预测,寻找预测性信息,自动地提出描述重要数据类的模型或预测未来的数据趋势,这样以往需要进行大量手工分析的问题如今可以迅速直接由数据本身得出结论。。

3.4概念描述

对于数据库中庞杂的数据,人们期望以简洁的描述形式来描述汇集的数据集。概念描述就是对某类对象的内涵进行描述并概括出这类对象的有关特征。概念描述分为特征性描述和区别性描述,前者描述某类对象的共同特征,后者描述不同类对象之间的区别。生成一个类的特征性只涉及该类对象中所有对象的共性。生成区别性描述的方法很多,如决策树方法、遗传算法等。

3.5偏差检测

数据库中的数据常有一些异常记录,从数据库中检测这些偏差很有意义。偏差包括很多潜在的知识,如分类中的反常实例、不满足规则的特例、观测结果与模型预测值的偏差、量值随时间的变化等。偏差检测的基本方法是寻找观测结果与参照值之间有意义的差别。这常用于金融银行业中检测欺诈行为,或市场分析中分析特殊消费者的消费习惯。

● 数据挖掘工作总结

职责:

1、负责公司与阿里巴巴在新行业方向(新金融、新零售、国内外运营商)的产品研发;

2、负责分析挖掘客户/行业对大数据产品的需求(应用场景),利用数据分析结论提升客户业务能力。例如:文本挖掘,潜在客户挖掘,用户画像,个性化推荐,用能预测等;

3、进行大数据场景下的数据统计、数据挖掘、机器学习、深度学习,包括数据整理、模型建立、模型应用、评估优化等;

4、将客户需求准确转化为可执行的数学模型,针对不同的应用场景,负责编写数据挖掘算法及对其的优化;

5、基于需求分析/运营支持/商业报告等成果,抽取典型用户/客户/行业/产品分析模型并与开发团队沟通实施方案及构建产品原型。

岗位要求:

1、本科以上学历,扎实的机器学习、数据挖掘、统计学理论基础;有统计、应用数学、金融等相关专业背景优先;

2、精通常见机器学习算法(如逻辑回归、SVM、神经网络、决策树、贝叶斯等),有实际建模经验,掌握深度学习算法优先;

3、具有扎实的计算机操作系统、数据结构等编程基础,精通至少一门编程语言例如JAVA/python/R等;

4、熟悉Map-Reduce模型,对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验优先。

● 数据挖掘工作总结

岗位职责

1、根据公司历史数据对公司运营以及库存状况进行分析;

2、使用主流机器学习算法进行建模,对公司运营以及供应链操作进行指导;

3、与产品、运营、物流,开发等团队开展跨部门协作,基于数据分析的结论提出解决方案并落地执行。

岗位要求

1、数学,统计学、计算机等和数据处理高度相关专业,3年互联网公司数据分析工作经验;

2、熟悉主流机器学习算法,如:线性回归、svm、聚类分析,决策树等;

3、熟练掌握java或python语言,对数据结构和算法设计有较为深刻的'理解,能够独立或指导开发人员实现主流学习算法;

4、熟练掌握sql语言,可以根据需求独自进行简单的数据提取;

5、熟悉电商业务,理解供应链各个环节的业务知识;

6、善于沟通以及较强的项目开发管理能力。

● 数据挖掘工作总结

20xx年我项目部认真贯彻落实实施公司各种要求,通过广大干部职工的共同努力,顺利的完成了矿方给项目部所下达各项任务,在和矿派管理人员双重安全管理模式下,不但最大限度地稳定了队伍,而且也很好地磨合了队伍锤炼了队伍,生产经营也取得了重大的突破,20xx年产值突破了3.5亿元,项目部现在目前有1200多名职工,各项工作都取得了可人的成绩。

一、20xx年项目部顺利完成各项生产任务

完成掘进进尺6500余米,巷道挑顶2500米, 6个风桥,起底6500米,硬化铺底3500米,巷道补强4500余米,巷道注浆施工:3500余米,还完成了2308、4307、4304综放工程面附属工程,水仓、绞车硐室50余个,完成零工约11万个,还有矿方安排的其他紧急零星工程等。我积极配合领导与矿方各个部室协调沟通,项目部没有出现窝工、返工的现象。

二、管理创新显成效

今年以来,我项目部管理人员为更好的为队组服务,进行组织机构创新,对项目部进行分组管理,共分为生产运输组、技术组、安全通风组、后勤组、机电设备组、劳资财务组共六个组。队组针对需要解决的问题,进行对口解决。使我项目部的工作效率大大提高。

(一)生产创新管理显成效:通过生产制度创新,比如每个月25日项目部召开生产评估会,对项目部9个队组的当月完成情况进行汇总、并进行通报;对完成生产任务的队组进行相应制度的奖励,对未

完成生产任务的队组进行相应制度的处罚;并对当月队组施工过程中遇到的难题进行解决。组织管理人员深入井下一线解困难,当项目部队组掘进过程中遭遇困难时,我项目部组织相关管理人员到井下现场,通过开现场会的形式,把我项目部队组的施工困难解决在现场;

(二)安全生产双丰收:深入开展安全活动, 强化人本管理,加大教育培训力度,提高全员素质,以员工素质保安全(以素保安);突出一通三防、防治水等安全重点,狠抓现场管理,落实安全生产责任制,以责任落实保安全(以责保安);三违教育管理:经过一段时间对职工的培训教育后,职工安全意识有了很大进步,从3月份开始我项目部“三违”次数有了明显的下降趋势,由原来的每月40余起,降至现在的每月20余起,同比下降了50%。特别是普掘队组,上半年发生的几起磕手碰脚事故都是由于违章引起的,自5月份开始,“三违”人次由原来的每月10余人降至现在的每月6人次左右,有的队组更是实现了月度零违章。

本年度项目部共查隐患1142条,其中严重隐患23条,进入“安全月”后,各队组基本实现了月度无二次下卡,无严重隐患。

全年实现了重伤以上事故为零的指标,但在施工作业过程中,部分队组由于仍然有不重视的思想,还是发生了6起磕手碰脚的小事故,相比去年下降了2起。

通过加强安全管理体系和制度建设,实现依法保安;加强安全文化建设,营造了浓厚的安全氛围,促进了项目部安全形势的持续稳定发展。实现了安全生产双丰收。

(三)机电管理上台阶:立足安全规程,制定各种制度,强化机电安全质量标准化。结合项目部实际情况制定了《项目部机电安全质量标准化及考评办法》;《项目部机电管理制度》;并制定了专业考核标准,对井下出现的电气失爆,电缆吊挂及保护情况,加大了维护措施。其它问题也得到了相应的整改,电缆悬挂明显整齐,脏,乱,差的现象基本得到控制。同时为了加强制度化和规范化的管理,特别制定了机电工岗位责任制。

加强现场机电设备的管理和检修维护,充分发挥机械设备的`优势和效能,减少机电事故,提高全体机电人员的管理和操作水平。利用“春检”和“雨季三防”,定期对井上下高低压线路巡视检修。对项目部各队组供电系统进行隐患排查处理对项目部地面线路进行了两次整改。强化每月机电检查,加强平时排查。加强机电工培训工作。本年度与矿建机电经理联系组织各队机电工到矿建中心和江苏八达机械厂家培训3次,培训人数达到35人。在项目部联系风机切换开关技术人员前来我项目部机电实验室现场讲课培训,对岗位司机和看护风机人员进行理论和实践上的培训。每月抽空在项目部开机电例会一次。20xx年,项目部共组织各队组机电检查15次,共查出并整改问题215条。设备失爆率有了很大程度下降,较大程度地扼制了安全事故的发生。

(四)科技创新新征程:根据矿建公司对科技创新工作的安排,项目部也对科技创新工作进行了针对性的布臵,并成立了科技创新领

导组,设定了20xx年上报5项,力争8项的创新目标。通过努力,项目部本年度上报科技创新项目8项,五小成果13项。在矿建公司组织的科技创新座谈会,项目部有4项科技创新成果荣登矿建公司的《科技创新专刊》。

(五)后勤管理有保障:今年以来,后勤系统紧紧围绕矿建中心总体工作目标,实出环境整治、供热、房改工作等重点管理,使员工的生活质量得到了明显提高。

狠抓环境卫生,今年共清理垃圾500吨,保证了项目部内的整洁,全年无传染病、无食物中毒事件。强化住房管理工作,住房是我项目部的一件大事,关系到每一位职工的切身利益,修建了活动室,配备了台球案、乒乓球案、双杠、象棋、跳棋、哑铃等,活动器材丰富了职工的业余生活,扩建澡塘100多平方,并给女职工修建澡塘保证每一位职工在班后能及时洗上热水澡,维修职工住宿200多平方,保证职工的住宿问题,并派有专人负责。在食堂和澡塘、供热管理上,20xx年我们以服务职工为宗旨,为职工担供最优质的洗浴、住宿、就餐服务,并完成了各类检查工作组的接待任务。

(六)加强职工培训,注重人才培养:

1、特殊工种培训:(1)、安管初训人员72人,复训16人,再培训14人;(2)、班组长初训52人,复训11人;(3)、井下电工初训84人,复训24人;(4)、掘进机司机初训30余人,复训2人;(5)、探放水共初训23人;

2、一般工种培训:(1)、支护工初训650人,再训500人;(2)、掘进工初训100人;(3)、刮板司机初训440人,再训150人;(4)、

三机司机初训400人;(5)、小绞车司机初训150人;(6)、水泵司机初训200人;(7)、挖掘机司机培训50余人;

3、在矿职教部培训安检工40余人,瓦斯检查工20人,创伤自救人员30人,探放水工39人。

4、共计初训:2380人次,复训:717人次;

我项目部通过组织结构创新、管理制度创新、等方方面面进行科学实践,让创新的理念、创新的方法、创新的氛围深入人心,为企业的发展进行有益的尝试。

三、建立健全各项规章制度,用制度来规范管理,约束行为

今年以来,项目部人员不断增加,管理难度也越来越大,项目部领导班子就开始重视制度建设,不断地建立健全各项规章制度,把队伍稳定做为制定制度的出发点,把锻炼队伍做为提升管理的根本点,不是全盘否定,而是日臻完善,我们把好的制度继续执行下去,把不好的制度进行重新完善,最大限度地照顾到职工的情绪,在短短的三个月,我们就建立健全的各项规章制度,先后制定和完善了各岗位责任制,并制定和修改了《安全质量标准化考核办法》、《月度生产绩效考核管理制度》《项目部管理人员工资分配方案》、《运输及顶板考核办法》、《管理人员请销假制度》、《*****项目部节能降耗方案》等,迅速地与矿建公司和*****公司各项管理制度接轨,也使管理走上了健康发展的轨道。

● 数据挖掘工作总结

1理论研究

1.1客户关系管理

客户关系管理的目标是依靠高效优质的服务吸引客户,同时通过对业务流程的全面优化和管理,控制企业运行成本。客户关系管理是一种管理理念,将企业客户视作企业发展最重要的企业资源,采用企业服务优化等手段来管理客户关系。客户关系管理并不是单纯的信息技术或者管理技术,而是一种企业生物战略,通过对企业客户的分段充足,强化客户满意的行为,优化企业可盈利性,将客户处理工作上升到企业级别,不同部门负责与客户进行交互,但是整个企业都需要向客户负责,在信息技术的支持下实现企业和客户连接环节的自动化管理。

1.2客户细分

客户细分由美国学者温德尔史密斯在20世纪50年代提出,认为客户细分是根据客户属性将客户分成集合。现代营销学中的客户细分是按照客户特征和共性将客户群分为不同等级或者子群体,寻找相同要素,对不同类别客户心理与需求急性研究和评估,从而指导进行企业服务资源的分配,是企业获得客户价值的一种理论与方法。因此我们注意到,客户细分其实是一个分类问题,但是却有着显著的特点。

1.2.1客户细分是动态的企业不断发展变化,用户数据不断积累,市场因素的变化,都会造成客户细分的变化。所以客户细分工作需要根据客户情况的变化进行动态调整,

减少错误分类,提高多次细分中至少有一次是正确分类的可能性。

1.2.2受众多因素影响

随着时间的推移,客户行为和心理会发生变化,所以不同时间的数据会反映出不同的规律,客户细分方法需要在变化过程中准确掌握客户行为的规律性。

1.2.3客户细分有不同的分类标准

一般分类问题强调准确性,客户关系管理则强调有用性,讲求在特定限制条件下实现特定目标。

1.3数据挖掘

数据挖掘就是从大型数据库数据中提取有价值的、隐含的、事前未知的潜在有用信息。数据挖掘技术不断发展,挖掘对象不再是单一数据库,已经逐渐发展到文件系统、数据集合以及数据仓库的挖掘分析。

2客户细分的数据挖掘

2.1逻辑模型

客户数据中有着若干离散客户属性和连续客户属性,每个客户属性为一个维度,客户作为空间点,全部客户都能够形成多为空间,作为客户的属性空间,假设A={A1,A2,…Am}是一组客户属性,属性可以是连续的,也可以离散型,这些属性就形成了客户m维属性空间。同时设g是一个描述客户属性的一个指标,f(g)是符合该指标的客户集合,即为概率外延,则任一确定时刻都是n个互不相交集合。在客户价值概念维度上,可分为“有价值客户”“潜在价值客户”“无价值客户”三种类型,定义RB如下:(1)显然RB是一个等价关系,经RB可分类属性空间为若干等价类,每个等价类都是一个概念类,建立客户细分,就是客户属性空间和概念空间映射关系的建立过程。

2.2客户细分数据挖掘实施

通过数据库已知概念类客户数据进行样本学习和数据挖掘,进行客户属性空间与概念空间映射的自动归纳。首先确定一组概念类已知客户集合。首先确定一个映射:p:C→L,使,如果,则。,求p(c)确定所属概念类。数据部分有客户数据存储和概念维数据构成,客户数据存储有企业全部内在属性、外在属性以及行为属性等数据,方法则主要有关联规则分析、深井网络分类、决策树、实例学习等数据挖掘方法,通过对客户数据存储数据学习算法来建立客户数据和概念维之间的映射关系。

2.3客户细分数据分析

建立客户动态行为描述模型,满足客户行为非确定性和非一致性要求,客户中心的管理体制下,客户细分影响企业战术和战略级别决策的生成,所以数据挖掘要能够弥补传统数据分析方法在可靠性方面的缺陷。

2.3.1客户外在属性

外在属性有客户地理分布、客户组织归属情况和客户产品拥有情况等。客户的组织归属是客户社会组织类型,客户产品拥有情况是客户是否拥有或者拥有哪些与其他企业或者其他企业相关产品。

2.3.2内在属性

内在属性有人口因素和心理因素等,人口因素是消费者市场细分的重要变量。相比其他变量,人口因素更加容易测量。心理因素则主要有客户爱好、性格、信用情况以及价值取向等因素。

2.3.3消费行为

消费行为属性则重点关注客户购买前对产品的了解情况,是客户细分中最客观和重要的因素。

2.4数据挖掘算法

2.4.1聚类算法

按照客户价值标记聚类结果,通过分类功能,建立客户特征模型,准确描述高价值客户的一些特有特征,使得企业在之后的市场活动中能够迅速发现并抓住类似的高价值客户,全面提高客户的整体价值水平。通常都采用中心算法进行客户的聚类分析,分析涉及的字段主要有客户的基本信息以及与客户相关业务信息,企业采用中心算法,按照企业自身的行业性质以及商务环境,选择不同的聚类分析策略,有主属性聚类分析和全属性聚类分析两类。主属性聚类分析是企业根据在企业标度变量中选择主要弧形作为聚类分析变量。通常区间标度变量选用的度量单位会对聚类分析结果产生很大影响,选择的度量单位越小,就会获得越大的可能值域,对聚类结果的影响也就越大。

2.4.2客户分析预测

行业竞争愈加激烈,新客户的获得成本越来越高,在保持原有工作价值的同时,客户的流失也受到了企业的重视。为了控制客户流失,就需要对流失客户的数据进行认真分析,找寻流失客户的根本原因,防止客户的持续流失。数据挖掘聚类功能同样能够利用在客户流失数据分析工作中,建立基于流失客户数据样本库的分类函数以及分类模式,通过模型分析客户流失因素,能够获得一个最有可能流失的客户群体,同时编制一个有针对性的挽留方案。之后对数据进行分析并利用各种数据挖掘技术和方法在多个可供选择的模型中找出最佳模型。初始阶段,模型的拟合程度可能不理想,但是随着模型的不断更换和优化,最终就有可能找出合适的模型进行数据描述并挖掘出流失数据规律。通常模拟模型都通过数据分析专业和业务专家协作完成,采用决策树、贝叶斯网络、神经网络等流失分析模型,实现客户行为的预测分析。

3结语

从工业营销中的客户细分观点出发,在数据挖掘、客户关系管理等理论基础上,采用统计学、运筹学和数据挖掘技术,对客户细分的数据挖掘方法进行了研究,建立了基于决策树的客户细分模型,是一种效率很高的管理工具。

作者:区嘉良 吕淑仪 单位:中国石化广东石油分公司

● 数据挖掘工作总结

数据产品年终工作总结



一、引言


本年度是数据产品团队发展的关键一年,我们在产品研发、市场推广、数据分析等方面都取得了重要的突破。本文将对数据产品团队的年度工作进行详细总结和分析,并对未来的发展提出一些建议。



二、产品研发


我们今年团队在产品研发方面取得了一系列重要的成果。首先,我们成功推出了数据智能分析平台,该平台能够帮助用户从数据中提炼有价值的信息。其次,我们改进了现有的数据产品,提高了用户体验和性能。最后,我们积极采纳用户反馈,不断优化产品功能,增加了用户选择。



三、市场推广


市场推广是产品成功的重要一环。我们今年在市场推广方面进行了大量的工作。首先,我们加强了与合作伙伴的合作,推动产品的推广和销售。其次,我们参加了多个行业展会,提升了产品的知名度和影响力。最后,我们通过线上媒体、社交媒体等渠道进行了广告宣传,吸引了大量的目标用户。



四、数据分析


数据分析是数据产品团队的核心能力之一。今年我们进一步加强了数据分析工作,并取得了显著的进展。首先,我们提升了数据收集和处理的效率,能够更好地满足用户需求。其次,我们引入了先进的数据分析工具和算法,帮助用户更准确地掌握数据背后的洞察。最后,我们将数据分析结果与市场需求结合,为用户提供了更有针对性的解决方案。



五、团队合作


团队合作是我们能够取得成功的重要原因之一。今年我们在团队合作方面做了不少努力。首先,我们建立了有效的沟通机制,提高了信息传递的效率。其次,我们鼓励团队成员相互学习和分享经验,提升整体团队的能力。最后,我们加强了团队的凝聚力,激发了团队成员的积极性和创造力。



六、挑战与机遇


在本年度的工作中,我们也面临了一些挑战和机遇。首先,市场竞争日益激烈,我们需要不断提升产品的竞争力和创新能力。其次,数据安全和隐私保护成为了重要的议题,我们需要加强对数据安全的保护和法律法规的遵守。最后,数据需求日益复杂多样,我们需要不断发展新的数据分析技术和算法,适应市场的变化和用户的需求。



七、未来发展建议


根据我们对本年度工作的总结和分析,我提出以下未来发展建议。首先,我们需要进一步提升产品的用户体验和性能,不断改进和优化产品功能。其次,我们要加强与合作伙伴的合作,开拓更多的合作机会。最后,我们要加强技术研发和人才培养,提高团队的核心竞争力。



八、结语


在过去的一年里,数据产品团队在产品研发、市场推广、数据分析和团队合作等方面取得了重要的进展。我们充分发挥团队的优势,不断创新和进步,提高了团队的整体实力。在未来的发展中,我们将继续努力,致力于为用户提供更优质的数据产品和服务。

● 数据挖掘工作总结

数据产品年终工作总结



尊敬的领导、同事们:



迈入2023年,回顾过去一年的工作,我对数据产品团队在业务发展和数据驱动决策方面所做出的贡献感到自豪。以下是我对过去一年的工作进行详细总结,展示了团队的成果、改进和未来的发展方向。



一、项目成果:



1. 新产品推出:我们团队成功推出了两款创新数据产品,给公司带来了重要的竞争优势。通过深入用户研究和市场分析,我们调整了产品特性,提供了更准确、可靠的数据分析结果,帮助公司在市场上脱颖而出。



2. 数据质量提升:我们致力于提高数据质量,通过整理数据源、建立数据清洗流程以及优化数据存储和管理方式,有效降低了数据质量问题带来的影响。此外,我们还制定了数据质量管理指南,确保数据质量的稳定和可持续性。



3. 数据分析模型优化:我们对现有的数据分析模型进行了细致的优化和改进。通过对大量数据进行处理和分析,我们改进了模型的准确性和效率,为决策提供了更可靠的依据。



4. 数据可视化:我们通过建立数据可视化平台,将机器学习和可视化相结合,将复杂的数据呈现简洁直观的图表和仪表盘,使决策者能够更加直观地理解和利用数据。



二、团队合作与沟通:



1. 协作能力提升:我们通过团队内部培训和技术分享会,提高了团队成员间的协作能力和技术水平。每位团队成员都有机会分享自己的经验和知识,进一步增强了团队的凝聚力和共同进步的动力。



2. 跨团队合作:为了解决多个部门之间的数据共享和协作难题,我们积极与其他团队合作,建立了跨团队的数据分享和合作机制。通过共同的数据平台和沟通渠道,信息传递更加高效,团队合作更加紧密,实现了更好的业务协同效果。



3. 交流与反馈:我们定期组织团队会议和沟通会,分享项目进展和遇到的问题,团队成员充分交流意见和建议。此外,我们采用了360度反馈机制,鼓励团队成员与领导之间的互动和反馈,提高了工作效率和工作质量。



三、持续改进与学习:



1. 数据敏感性保护:面对数据安全和隐私保护的重要性,我们提升了数据敏感性保护措施,采用了更加严格的权限管理、数据加密和访问控制等手段,确保数据的安全性和合规性。



2. 技术创新:我们与技术部门紧密合作,应用最新的技术方法和工具,不断推动数据产品的创新。我们引入了机器学习和人工智能技术,提高了数据分析的效率和准确性,为业务决策提供更有竞争力的洞见。



3. 学习与发展:我们鼓励团队成员参加行业内外的学术会议和培训课程,不断学习最新的技术和理论知识。我们还定期组织团队内部的技术分享和学习交流,激发团队成员的学习热情和专业能力的进一步提升。



未来发展方向:



1. 数据生态建设:我们将进一步完善和扩展数据生态系统,促进数据在公司内各个部门之间的自由流动和高效利用。通过提供更广泛的数据服务和分析工具,帮助各个部门更好地运用数据,提高决策的科学性和效果。



2. 数据治理标准化:我们将制定数据治理的标准和流程,建立数据发布和应用的规范。通过确保数据的一致性、准确性和可追溯性,提高数据的管理和使用效率,降低数据质量问题的风险。



3. 战略合作拓展:我们将与行业内的合作伙伴建立战略合作关系,共享数据资源和技术能力,扩大数据产品的市场影响力。同时,我们将密切关注行业和市场的动态,及时调整产品策略和方向,保持竞争优势。



总结:



在过去一年的工作中,我们的数据产品团队取得了令人瞩目的成绩。通过持续的创新和提升,我们为公司带来了实实在在的价值和竞争优势。我相信,在未来的工作中,我们将继续努力不懈,不断创新和学习,为公司的发展做出更大的贡献。



感谢公司领导和同事们对我们团队工作的支持和鼓励。期待与大家一起共同努力,书写更加辉煌的明天!



谢谢!

● 数据挖掘工作总结



为确保产品质量,每个企业都需要进行送检工作。而送检数据录入则是送检工作中不可或缺的部分。在完成了对送检数据的录入后,企业可以通过数据分析,及时发现问题,及时解决,避免了不必要的损失,提高了产品的质量。本文将会对送检数据录入工作进行总结,掌握了这些技巧,您就可以更加高效精准地完成数据录入工作。



一、制定好工作计划



在开始工作前要认真制定好工作计划。



1、明确工作时间,制定工作时间表,要做到听从领导指挥,高效完成任务。



2、了解产品属性,组织专业人员,设置专业领域。确保人员技术过硬,能够精准准确填写数据。



二、准备数据录入工具



要让数据录入变得更加容易,我们需要准备一些数据录入工具,例如,计算机、各种随堂笔记、文本处理软件等,这些工具可以用来优化数据录入的流程。



三、QA检查



在数据录入工作之前进行QA检查,详细了解检查点,并设立清晰的检查流程,可以有效地避免数据错误,从而保证数据的准确性。



四、认真检查输入的数据



1、单调性要合理,数字必须一一对应。



2、对照原始数据进行检查,避免输入错误;



3、若发现错误,在进行修改时,一定要确保修改前后数据的一致性。



五、注意保护数据



我们要时刻注意保护数据,避免因为信息泄露和未经授权的修改导致数据出现错误。



我们应该采取以下预防措施:



1、每个人都有各自的权限,避免非授权性的访问和修改;



2、在每次数据录入工作结束后,及时备份数据,以防出现数据问题;



3、避免将数据未经同意外传。



六、优化发送数据



在发送数据之前,我们需要优化数据的格式。例如将数据保存为更常用的格式(例如CSV或Excel格式),以确保接收方能够很好地理解和使用该数据。



七、总结经验教训



每次完成数据录入工作后,我们需要总结经验教训,找出工作中的错误和缺点,以便以后更好的改进工作流程,弥补过失。



经过以上几个步骤的实践,相信您能够更加高效精准地完成数据录入工作。但需要注意的是,方法与工具并不是通用的,需要根据实际情况进行调整和优化。

● 数据挖掘工作总结

在数据分析岗位工作三个月以来,在公司领导的正确领;一、虚心学习,努力提高网店数据分析方面的专业知识;作为一个食品专业出身的人,刚进公司时,对网店方面;二、踏实工作,努力完成领导交办的各项工作任务;三个月来,在领导和同事们的支持和配合下,自己主要;1。汇总公司的产品信息日报表,并完成信息日报表的;2。协同仓库工作人员盘点库存,汇总库存报表数据分析个人工作总结

在数据分析岗位工作三个月以来,在公司领导的正确领导下,深入学习关于淘宝网店的相关知识,我已经从一个网店的门外汉成长为对网店有一定了解和认知的人。现向公司领导简单汇报一下我三个月以来的工作情况。

一、虚心学习,努力提高网店数据分析方面的专业知识

作为一个食品专业出身的人,刚进公司时,对网店方面的专业知识及网店运营几乎一无所知,曾经努力学习掌握的数据分析技能在这里根本就用不到,我也曾怀疑过自己的选择,怀疑自己对踏出校门的第一份工作的选择是不是冲动的。但是,公司为我提供了宽松的学习环境和专业的指导,在不断的学习过程中,我慢慢喜欢上自己所选择的行业和工作。一方面,虚心学习每一个与网店相关的数据名词,提高自己在数据分析和处理方面的能力,坚定做好本职工作的信心和决心。另一方面,向周围的同同事学习业务知识和工作方法,取人之长,补己之短,加深了与同事之间的感情。

二、踏实工作,努力完成领导交办的各项工作任务

三个月来,在领导和同事们的支持和配合下,自己主要做了一下几方面的工作:

1。汇总公司的产品信息日报表,并完成信息日报表的每日更新,为产品追单提供可靠依据。

2。协同仓库工作人员盘点库存,汇总库存报表,每天不定时清查入库货品,为各部门的同事提供最可靠的库存数据。

3。完成店铺经营月报表、店铺经营日报表。

4。完成每日客服接待顾客量的统计、客服工作效果及工作转化率的查询。

5。每日两次对店铺里出售的宝贝进行逐个排查,保证每款宝贝的架上数的及时更新,防止出售中的宝贝无故下架。

6。配合领导和其他岗位的同事做好各种数据的查询、统计、分析、汇总等工作。做好数据的核实和上报工作,并确保数据的准确性和及时性。

7。完成领导交代的其它各项工作,认真对待、及时办理、不拖延、不误事、不敷衍,尽量做到让领导放心和满意。

三、存在的不足及今后努力的方向

三个月来,在公司领导和同事们的指导和配合下,自己虽然做了一些力所能

及的工作,但还存在很多的不足,主要是阅历浅,经验少,有时遇到相对棘手的问题考虑欠周密,视角不够灵活,缺乏应变能力;理论和专业知识不够丰富,导致工作有时处于被动等等。另外,由于语言不通的问题,在与周围的同事沟通时,存在一定的障碍。

针对以上不足,在今后的工作中,自己要加强学习、深入实践、继续坚持正直、谦虚、朴实的工作作风,摆正自己的位置,尊重领导,团结同事,把网店的数据分析工作做细做好。

四、对公司人员状况及员工工作状态的分析

1。对公司人员状况的分析

要想管好一个企业,首先要管好这个企业的人,要想管好一个企业的人,首先要对这个企业人员的基本情况有个比较全面的、细致的、科学的正确的了解。

目前公司成员大部分为90后,是一个年轻化的团队。他们大部分在长辈们的宠爱中长大,心理素质不怎么成熟,没有自信心,没有目标,责任心不强,不怎么能吃苦,心理承受能力较弱,不爱学习,不明白工作的真正意义。不过也有一部分比较懂事,做事比较踏实、勤奋、性格也比较好。

因此,我们在招聘的时候,要招那些肯学习、善于学习、领悟力学习力强的人。不过,这部分人一般都比较现实,对待遇、公正公平、发展空间比较看重。

其实,我们要想打造一流的企业,培养一流的员工,一流的管理人员并不是难事。最重要的是要有一颗真正的,持之以恒的做事业的心。

2。对员工工作状态的分析

目前,部分岗位存在分工不明确的现象,出现问题时,同事之前相互推诿,不愿意承担责任,这也是部分员工责任心不强的最直接反映。部分员工没有团队合作意识,这就可能导致工作在某个环节衔接不上,进而有可能出现重大问题。

因此,明确分工和加强员工的团队合作意识也是公司目前需要解决的问题。

五、对公司企业文化的分析

企业文化,对我本人来讲,是一个管理学里面比较专业的词,我怕自己讲不好它。但我却可以深刻的体会到,这个无形的东西就在我的周围,在我们的骨髓里。因为我觉得它重要,所以,还是想讲它,而且觉得非讲不可。

在我所走到的企业里,旺旺集团的企业文化给我留下的印象最深。他们有自己明确的经营理念、经营目标、公司训、公司口号、企业标识、公司社歌和独立的传媒机构。他们的企业文化具有很强的感染力和凝聚力。

但是,很长一段时间以来,我们的公司一直处在“黎明前的黑暗”之中,为什么公司领导的那种不到山顶不罢休的气势、决心和信心,并没有感染所有的员工,那种不到山顶不罢休的气势、决心和信心并没有很好的变成我们的企业文化。没有被突出出来,没有在公司发展的日日夜夜中,张扬的体现给我们企业所有的员工们看。甚至是没有被人感觉到。

所以,加强健康向上的企业文化的建设工作,也就成为一种必要。十分的必要。也该引起足够的重视。把目前创业阶段的决心和信心力量、企业和员工相互之间的理解、信任、支持和默契融入到我们的企业文化中去。从而感染和吸引更多的优秀人才到我们中来,共同开创我们企业的未来。

● 数据挖掘工作总结

本人在读硕士一名,研二,理工科,所作工作于这两方面无关。但是,最近对这个方向特别感兴趣,真的很想从事这方面的工作。目前,正在自学中,以及找相关实习。但是,我看了一些东西之后,有些不解。问题如下:

1 数据挖掘与数据分析在 !实际工作中! 真的有很大区别甚至是区别吗?我知道一些定义,比如数据分析偏重于统计,而数据挖掘的工作是分类,聚类,是信息的提炼,但是实际工作中是不是往往两方面都在做?分不清,分不开。

软件)找数据方面的人会要求编程比如python,r,hadoop等。有些则似乎要求的是应用,比如 spss,sas,modeler(过去叫clementine)等。是不是编程的那部分人使网站能动态的`响应,而应用的那部分人的工作是通过了解分析改善运营跟业务状况?是不是有些公司把这部分人叫做需求分析师,业务分析师等?

3 针对与2所提问及的搞应用的人,现在的公司真的有对他们的分析结构给予足够重视吗?这部分人一般在什么部门?岗位多吗?

4 对于整个数据分析/挖掘,你们觉得是一次概念炒作,又或是我们遇到了大数据/云时代,所以有比很大的应用前景?

● 数据挖掘工作总结

大家好!欢迎大家来参加我们今天这个联络中心大数据系列应用的讲座,这一次我们这个讲座是我们这一系列的第一次课程。现场有我们的观众,也有视频前面的观众。

首先简单介绍一下所谓联络中心的大数据应用,这个系列课程还是围绕着现在比较流行大数据的概念,然后跟联络中心之间彼此相关的关系,跟相应的应用,那我们会有六个课程的主题。

第一部分我们是在讲从数据挖掘到大数据。第二个主题是跟大家介绍有关大数据的基本概念,第三个部分会跟大家介绍联络中的一个全局的战略,第四个部分是在讲联络中的精准营销上面的运用,第五个部份是怎么运用联络中心提升客户的体验,最后第六个这个单元我们会跟大家介绍一下如何在联络中心内部搭建测试学习这个平台。

那开始我们后面课程之前,会花点时间简单介绍一下我自己个人背景。

我叫徐元亮在联络中心这个行业工作有超过xx以上的时间,那最早我求学跟第一份工作是在台湾但是从xx年以后就在内地开始工作,那在大陆这边也有超过xx以上工作时间。在学校部分我在台湾的国立台湾大学心理系取得本科的学历,之后在美国德克萨斯贝勒大学BaylorUniversity取得教育心理学的学位。

第一份工作是在台湾电信公司叫台湾大哥大它的一个2000以上规模的CallCenter里面担任培训主管一个工作,在xx年到大陆之后陆陆续续保险公司在几家保险公司曾经公做过包括太平洋保险天平保险中国大地保险最后一份工作在大地保险工作七年时间,协助它建立电话销售中心整个筹建以及后面规模的运作,那个人最大的管理幅度当时大概下面管理大概超过有2000的座席。年营业额超过10亿。那在xx年以后离开了企业界,在外面开始从事咨询与专门培训的工作那我今年开始xx年也成立专门这个培训工作室,那主要培训内容主要围绕着联络中心开始跟各位能够有机会介绍这个有关联络中心大数据运用或者电话营销管理或者电话客服管理这个课程。以上是有关是自己资历的简介,那之后是我们这系列正式课程。

首先第一个我们要跟大家做报告分享主题是从数据挖掘走向大数据。开始今天主题之前要跟大家谈一下到底大数据是什么样概念,还有就是说我们跟联络中心彼此之间有什么样的关系。

这几年在我们国内大数据是热门的话题!各行各业几乎脱口都要谈到大数据,做一些数据分析整理的时候,基本上你不讲大数据感觉好像这个企业管理现在这个数据库管理就脱节了。实际上真真正有多少企业已经真正开始用大数据这个应用,就联络中心这个行业来讲又有那些联络中心真正开始应用大数据。

个人觉得就是说如果真正要了解大数据在联络中心的运用,可能要先从客户关系管理跟数据挖掘,这些基本的数据管理概念开始谈起。

这一张投影片大概是我在10多年前第一份工作,刚才提到的台湾大哥大有位同事叫李明德李先生,他现在应该还在台湾大哥大工作,当时他做的投影片。

经过10多年时间,虽然中间有一些跟客互动渠道有了变化,但是里面一些包括联络中心跟数据仓储跟后面目标客户细分,客户忠诚度终身价值之间的关系,其实10多年来我认为还是没有太大的变化。中间数据挖掘技术其实从这个概念到现在有将近xx时间,但是真正在联络中心或者企业界,得到很好的应用可能也是最近几年的事情。

这张图可以跟大家解释,有关客户关系管理跟联络中心的一些说明,简单来讲就是说我们认为做到应用数据挖掘或大数据联络的前提,它必须是一个以客户为中心的联络中心,在前台部分它会有各种不同的接触渠道,跟客户进行互动包括传统电话语音包括现在比较流行的手机App或即时通讯软件像QQ或者是说天猫、淘宝’上面的旺旺包括微信上面的这个社交媒体,微信微博,包括互联网上面官网,包括微信的公众号等等。这些都可以依靠我们联络中心在后台给客户提供相应的一些支持。

另外来讲,ATM终端,或者是在国外我们看到有一些加油站或者便利超商它也有一些做娱乐或者是相关服务购买、充值的终端,事实上也能够由CallCenter在后面提供相关的服务。

另外还有传统服务传真电子邮件等等,这些其实也都在联络中心提供互动的一些范围。还有就是一些实体渠道。传统上面我们大家认为联络中心跟面对面的机构跟渠道之间没有什么太大关系,但事实上我们看到很多先进公司事实上在传统渠道的部分他其实也是有CallCenter在给我们传统渠道面对面销售人员或者这个中介销售队伍提供相应的支持。

比如说十年前我在帮微软和Cisco提供外包服务的时候,就看到他们的企业销售团队在跟客户去谈这些大的订制化IT系统解决方案的时候,不管是说买这个作业系统的软件或买一些服务器、Router路由器硬件,通常来讲他们会在CallCenter指定一个相应的助理做项目的支持,然后他们会提供简单的咨询及问题反应记录,甚至有一些制式化的报价等相应的工作。

有一些比较复杂的工作他会即时联系大客户项目代表本人到现场进行处理,总而言之,就是说如果我们能够做到以客户为中心的后台,其实联络中心它是会随着我们交互渠道不断的演进,在前台各种不一样的交互渠道中去提供数据收集跟整理。

为了做到以客户为中心,联络中心后面必须要有一个数据仓储,在数据仓储里面包括来自市场营销来自客户服务,从前端销售到后端服务售后整个全方位的一些信息。通过数据挖掘的一些手段以及工具,那我们能够做到目标客户的细分,针对不同客户细分我们给他一些客制化这个产品服务或者是说对流层。最终目的是提高客户的忠诚度以及提高客户终身价值,这个是我对联络中心与数据挖掘彼此之间关系的理解。

下一张投影片主要跟大家介绍怎么样从数据挖掘到真正产生商业价值、企业管理价值的商业智能系统。

简单来讲就是说我们做大量数据挖掘工作之后最主要目的是能够帮我们很多线索,作为我们联络中心跟客户去做服务跟销售的一个参考依据,甚至说做一个重要的指导。

为了达到这个目的从单纯数据挖掘我们必须进一步要做到所谓商业智能系统,商业智能系统的基本雏形大概会是这个样子的,在这个整个系统的最后面会有一些各种各样的数据源,不同数据源经过ETL一些程序它会进入我们的数据仓库,在经过数据仓库之后同样进到另外一道ETL.它会进到各个子的数据集市DataMarket在我们不同业务部门有需要的时候,不管是给客户提供销售、给客户提供服务,这个时候我们会从不同的数据集市子集当中,去抽取我所需要的信息,给我的工作提供相应指导,这个是一个简单的商业智能系统的雏形架构。

中间跟大家提一下ETL这样的概念,我们在讲数据挖掘或者比较热门的大数据的时候,经常提到我这个系统、这个模型的ETL流程是怎样?他指的就是:数据的提取Extract、数据转换Transform、以及数据加载Load,那这几个是在做数据整理当中,经常要使用的步骤。

不同数据库的管理系统,不同数据库的模型在这当中它其实有一些相应的不同作法,这也代表系统的优势和劣势,简单来讲,整个数据化到商业智能,后台部份必须具备跟数据库连接的功能、必须要具备ETL功能、必须要具备数据仓库跟数据集市管理功能,在前端的部份,它要有一个很友好的数据展示功能配置,同时要能做到数据探索的配置,比方说,我在显示的时候我可以看到全国的数据,我也可以进一步往下细分的每一个市,每一个三级的县或乡镇,甚至于来讲,可以看到某年龄段的客户或针对某一个产品曾经购买的客户。

回到我们讲数据挖掘在企业以及CallCenter的应用,我觉得可以从两个层面来看比较常见的应用。第一个跟我们联络中心比较有关的,是基于贯穿客户生命价值的数据分析,简单来讲,我们看整个生命周期可分为三个阶段:第一个阶段是客户获取、第二个阶段是客户接触、最后一个阶段是客户挽留跟赢回。

在客户获取阶段我们可以去做相关的渠道分析,比方说分析网络推广的成本跟收益,分析电话外呼响应率,分析交叉销售跟向上销售的效率。在客户生命周期价值部份,我们可以去分析客户价值模型,我们可以去做相关的客户分群,我们可以去做客户风险模型,针对他的信用、针对他的风险去做一些基于数据库的分析。

客户接触阶段主要可以从三个象限去做考虑,第一个是产品,第二个是客户,第三个是坐席,产品部份我们去分析它的产品设计对于整个销售行为、客户阶段的影响,产品定价可以去做进一步分析;客户的部份,我们可以分析他的沟通策略及用户体验;坐席部分,我们可以去做坐席的工作绩效,以及离职率等人力资源相关指标的分析。

最后是客户挽回跟赢回,客户挽回指的是说当客户有流失风险的时候,我应该怎么样作提早的介入,中间我们可以去分析客户挽回相应所花的预算,还有礼品的有效性,以及客户挽回成功率的模型。在客户赢回这个部份指的是说因为任何一个原因,这个客户可能不在我们这边继续购买产品或服务了,但是我有一个新的产品或服务,或者新的促销活动的时候,怎么想办法重新赢回。这里面我们可以分析客户流失的原因,流失率的分析,也可以去做重新赢回成功率的分析。

第二个我们经常使用到的数据分析向度,是贯穿整个企业经营的数据分析。从企业经营角度,我们分成四个部份来看,第一个是营销分析,第二是企业风险控制分析、第三个是产品创新、第四个是资源配置。

中间有一些我们可能会在后面其他单元讲到,简单来说,在整个企业级的分析当中,我们希望能尽量收集到大量数据,数据来源能尽量真实和准确,或着想办法提升它的真实准确程度,不同的数据可以来自不同的纬度,不一定要有非常明确的相关性,在数据之间会进一步交叉检验,有条件的情况下,我们可以在企业外部找一些公共的数据资源,或者跟其他企业、其他行业的数据间,去做外部数据的交换或拓展。

简单来讲,可以应用到的一些数据包括:客户信用分数、年收入、教育背景、职业、人脉关系、社交网络的记录、信用纪录、负债记录、在专业领域里面的相关纪录,他目前所属的人生阶段,已婚、未婚、有没有小孩等等,他的行为偏好以及电子商务购买的相关纪录,这些都可以做为企业分析的基础。同样的,在我们企业分析的依据之下,也可以对我们联络中心的作业提供相应的指导。

最后来讲,我们在做整个数据挖掘它的目的,就是说,我们当然希望下一步能够把我们的联络中心转换成一个基于大数据管理的联络中心。

首先的条件就是,在整个联络中心的后台,你必须要具备所谓数据生态系统的条件,如果说我联络中心没有做到以客户为中心,我联络中心的运作后台并没有相应数据库跟挖掘分析模型的支持,那其实大数据对我的联络中心日常管理作业起不到很大的指导意义。

所谓的数据生态系统,至少包含三大部分。第一个是有相应的数据源,包括外部电信运营商的数据,他的网路使用习惯,使用的流量,包括他的GIS的相关定位的历史纪录跟信息,公安部、教育部或者其他政府机构的公告讯息,社交网路上面留下的纪录以及电子商务购买的纪录,还有金融机构相关的购买跟信用行为、贷款行为等相应纪录,这些都可以做为数据来源;这些外部数据通过第二个部分,我们的数据实验室,在每个数据去做一定的价值评估,通过数据源的管理,去做数据相应的匹配,这里面可能会包括有效性的验证、除重、或者内外部数据的比对,在比对过程当中、整理过程当中,我们去评价相关所整理数据的价值,然后结合内外部数据,才回到我们第三个部分,就是建立起企业的数据平台,数据平台里面包含模型管理,中间可能包括相关的人口数据、资产数据、信用数据、生活行为、社会、支付行为等等其他一些数据,如果说企业考虑在现有的数据生态系统的基础下,我希望往进一步往大数据进行,现在开始也有很多大数据的基础架构,能够提供企业相应支持,这几年比较流行的比方说Hadoop、pIG、Hive这些是都基于大数据,或是基于非结构化数据,能够提供数据库支持的平台。

基本上基于以上这几点我们认为,在讨论联络中心去做大数据应用之前,必须要提前具备的主题,也是我们今天讨论从数据挖掘走向大数据的内容,以上这个单元就到这边,谢谢大家。

文章来源://www.qx54.com/fayangao/162091.html

数据挖掘工作总结相关文章

更多>