群学网

导航栏

×
你的位置: 群学网 >发言稿 >导航

概率论思想总结(系列17篇)

发布时间:2023-01-31

概率论思想总结(系列17篇)。

◍ 概率论思想总结

如何学习“概率论与数理统计”

《概率论与数理统计》由于其理论及应用的重要性,目前在我国高等数学教育中,已与高等数学和线性代数渐成鼎足之势。

学生们在学习《概率论与数理统计》时通常的反映之一是“课文看得懂,习题做不出”。概率论习题的难做是有名的。要做出题目,至少要弄清概念,有些还要掌握一定的技巧。这句话说起来简单,但是真正的做起来就需要花费大量的力气。不少学生在学习时,只注重公式、概念的记忆和套用,自己不对公式等进行推导。这就造成一个现象:虽然在平时的做题过程中,自我感觉还可以;尤其是做题时,看一眼题目看一眼答案,感觉自己已经掌握的不错了,但一上了考场,就考砸。这就是平时的学习过程中只知其一,不知其二,不注重对公式的理解和推导造成的。比方说,在我们教材的第一章,有这样一个公式:A-B=bar(AB)=A-AB,这个公式让很多人迷糊,因为这个公式本身是错误的,在教材后面的例题1-15中证明利用了这个公式,很多人就用教材上这个错误的公式套用,结果看不懂。其实这个公式正确的应该是A-B=AbarB=A-AB.这是一个应用非常多的公式,而且考试的时候一般都会考的`公式。在开始接触这个公式的时候就应该自己进行推导,发现这个错误,而不是看到这个公式之后,记住,然后运用到题目中去。大家在看书的时候注意对公式的推导,这样才能深层次的理解公式,真正的灵活运用。做到知其一,也知其二。

现在概率统计的考试试题难度,学员呼声不一,有的人感觉非常难,而且最让他们难以应对的是基础知识,主要涉及排列组合、导数、积分、极限这四部分。现在就这部分内容给大家分析一下。说这部分是基础,本身就说明这些知识不是概率统计研究的内容,他们只是在研究概率统计的时候不可缺少的一些工具。即然这样,在考试中就不会对这部分内容作过多的考察,也会尽量避免大家在这些方面丢分。分析到这里,就要指出一些人在学习这门课的“战术失误”。有些人花大量的力气学习微积分,甚至学习概率统计之前,将微积分重新学一遍,这是不可取的。对这部分内容,将教材上涉及到的知识选出来进行复习,理解就可以。万不能让基础知识成为概率统计的拦路虎。学习中要知道哪是重点,哪是难点。

如何掌握做题技巧?俗话说“孰能生巧”,对于数学这门课,用另一个成语更贴切――“见多识广”。对于我们自考生而言,学习时间短,想利用“孰能生巧”不太现实,但是“见多识广”确实在短时间内可以做到。这就是说,在平时不能一味的多做题,关键是多做一些类型题,不要看量,更重要的是看多接触题目类型。同一个知识点,可以从多个角度进行考察。有些学员由于选择辅导书的问题,同类型的题目做了很多,但是题目类型却没有接触多少。在考试的时候感觉一落千丈。那么应该如何掌握题目类型呢?我想历年的真题是我们最好的选择。

平时该如何练习?提出这个问题可能很多人会感到不可思议。有一句话说得好“习惯形成性格”。这句话应用到我们的学习上也成立。这么多年以来,有些人有很好的学习习惯,尽管他的学习基础也不好,学习时间也有限,但是他们能按照自己知道的学习规律坚持学习,能够按照老师说得去思考、前进。我们大多数人都有惰性,一个题目一眼看完不会,就赶紧找答案。看了答案之后,也就那么回事,感觉明白了,就放下了。就这样“掰了很多玉米,最后却只剩下一个玉米”。我们很清楚,最好的方法是摘一个,留一个。哪怕一路你只摘了2个,也比匆匆忙忙摘了一路,却不知道保留的人得到的多。平时做题要先多思考,多总结,做一个会一个,而且对于做过的题目要经常地回顾,这样才能掌握住知识。就我的辅导经验而言,绝大多数人还是在这个问题上出现了问题。

考试有技巧,学习无捷径。平时的学习要注重知识点的掌握,踏踏实实,这才是方法中的方法。“梅花香自苦寒来”,“书山有路勤为径”。

◍ 概率论思想总结

《概率统计》是高等院校理工类、经管类的重要课程之一。在考研数学中的比重大约占随机变量及其概率分布、数字特征、大数定律与中心极限定理、统计量及其概率分布、参数估计和假设检验、回归分析、方差分析、马尔科夫链等内容。

概率论与数理统计是数学的一个有特色且又十分活跃的分支,一方面,它有别开生面的研究课题,有自己独特的概念和方法,内容丰富,结果深刻;另一方面,它与其他学科又有紧密的联系,是近代数学的重要组成部分。由于它近年来突飞猛进的发展与应用的广泛性,目前已发展成为一门独立的一级学科。概率论与数理统计的理论与方法已广泛应用于工业、农业、军事和科学技术中,如预测和滤波应用于空间技术和自动控制,时间序列分析应用于石油勘测和经济管理,马尔科夫过程与点过程统计分析应用于等,同时他又向基础学科、工科学科渗透,与其他学科相结合发展成为边缘学科,这是概率论与数理统计发展的一个新趋势。 (孔繁亮)

专业概况

概率论与数理统计是社会等学科中不同类型数据的科学的综处理和统 计推断方法。随着人类社会各个体系的日益庞大、复杂、精密以及计算机的广泛使用,概率统计在信息时代的重要性也越来越大。本专业的重点在于为学生打下坚实 的数学基础,培养科研创新能力,了解并掌握丰富的现代统计方法。

专业背景

要求考生具备基础数学、概率论、数理统计分析、时间序列分析、随机分析、信息技术、计算机等相关学科知识。

研究方向

概率论与随机过程、数理统计、时间序列分析及其应用、保险精算、金融工程、非参数统计、随机分析与随机微分方程、随机动力系统,数学物理

就业前景

硕士毕业后,学生可报考基础数学学科的各专业、计算机科学、概率统计、金融学等与数学相关的或交叉的、高新技术学科的博士研究生;也可选择出国到知名大学继续深造,如哈佛大学、麻省理工大学等;当然,你还可到企业从事数学应用开发工作,事实上相当数量的毕业生都会选择在企业、事业单位从事统计调查、统计信息管理、数量分析的工作,随着计算机软件应用的日益加强,统计学,尤其是SPSS软件分析的前景看好,统计人才更是成为了用人单位争相“抢购”的“香饽饽”。

题型总结

目前,大部分同学开始了概率论和数理统计的复习,本文主要想对同学们近期的复习做一个简单的指导。概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:

(1)确定事件间的关系,进行事件的运算;

(2)利用事件的关系进行概率计算;

(3)利用概率的性质证明概率等式或计算概率;

(几何概型的概率计算;

(条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

(6)有关事件独立性的证明和计算概率;

(7)有关独重复试验及伯努利概率型的计算;

(概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;

(9)由给定的试验求随机变量的分布;

(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等计算概率;

(11)求随机变量函数的分布(12)确定二维随机变量的分布;

(13)利用二维均匀分布和正态分布计算概率;

(条件分布;

(15)判断随机变量的独立性和计算概率;

(16)求两个独立随机变量函数的.分布;

(方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;

(18)求随机变量函数的数学期望;

(相关系数并判断相关性;

(20)求随机变量的矩和协方差矩阵;

(21)利用切比雪夫不等式推证概率不等式;

(22)利用中心极限定理进行概率的近似计算;

(χF分布的定义、性质推证统计量的分布、性质;

(24)推证某些统计量(特别是正态总体统计量)的分布;

(25)计算统计量的概率;

(26)求总体分布中未知参数的矩估计量和极大似然估计量;

(有效性和一致性;

(28)求单个或两个正态总体参数的置信区间;

(29)对单个或两个正态总体参数假设进行显著性检验;

(30)利用χ2检验法对总体分布假设进行检验。

这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。

在解答这部分考题时,考生易犯的错误有:

(1)概念不清,弄不清事件之间的关系和事件的结构;

(2)对试验分析错误,概率模型搞错;

(3)计算概率的公式运用不当;

(4)不能熟练地运用独立性去证明和计算;

(5)不能熟练掌握和运用常用的概率分布及其数字特征;

(公式和性质进行综合分析、运算和证明。

更多信息请访问:新浪考研频道考研论坛

特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

专业轮廓

在自然界和人类的日常生活中,随机现象非常普遍,比如每期福利的中奖号码。概率论是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性作出一种客观的科学判断,并作出数量上的描述;比较这些可能性的大小。数理统计是应用概率的理论研究大量随机现象的规律性,对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明,并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性,使人们能从一组样本判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。

[关键词] 研究热点

罗燕(:现在应用统计方向的研究越来越热了,应用统计更贴近生活,所以越来越被各行各业注重。但是我们不要忘了统计的基础是概率。概率方面的研究仍然值得重视。

宋高阳(:统计学主要方向有随机理论、数据分析、金融统计等,就现在的情况来看,数据分析和数据挖掘会比较热门,因为应用的范围更广一些。如果研究生毕业之后选择工作,应用性较强的学科是最好的选择。

[关键词] 建议

宋高阳(:国内许多高校将统计学和金融学划归为一类,成立金融与统计学院或者直接统计学划归为经济系。这非常好理解,因为经济学和金融学都是以统计为基本方法的。但作为数学二级学科的统计学的范畴却和金融统计相去甚远,学术成分也更高一些。统计学以概率论为基础,理论性更强,对随机过程、概率极限、回归分析等基础知识的要求也更高。其实,统计学也不仅仅只是在金融学方面才有用武之地,回到开篇提到的“生物统计学”,就是当仁不让的热门“头牌”,这就要考生在报考时注意自己选择的到底是经济学院的统计学,还是数学系的统计学。

跨考院校推荐

北京师范大学的概率论研究群体历经三代人,已有李增沪、张余辉、王凤雨等著名的专家学者。这一研究群体被国际上的两个主要数学评论杂志誉为“马氏过程的中国学派”或“北京学派”。主要研究方向有交互作用粒子系统、随机分析、测度值马氏过程等。概率论和数理统计学科实力较强的院校还有南开大学、中南大学、东北师范大学、武汉大学、华中科技大学、中国科学技术大学等。

数学这棵大树历经多年的发展已经枝繁叶茂。一般重点大学的数学系都会有数十位甚至上百位教授或讲师,每位的研究方向都不一样,它们彼此的差异就好比达芬奇的鸡蛋,再加上与各种学科的交叉和发展,又产生了更多的新分支方向。也正因为这样,数学这门学科才会如此丰富多姿。

怎样学“概率论与数理统计”

“概率论与数理统计”是理工科大学生的一门必修课程,也是报考硕士研究生时数学试卷中重要内容之一[其中数学一占信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的.?

首先我们从历届考研成绩进行分析,观察一下高等数学与概率统计之间有什么差异其一是概率统计的平均得分率往往低于高等数学平均得分率.其二高等数学的得分分布呈两头小中间大现象,即低分和高分比例小,而中间分数段比例大,而概率统计的得分率却是低分多, 中间分数少,高分较多的现象.为什么会发生上述差异?经分析发现虽然高等数学与概率统计同属数学学科,但各有自己的特点. 高等数学主要是通过学习极限、导数和积分等知识解决有关(一维或多维)函数的有关性质和图象的问题, 它与中学的数学有着密切联系而且有着相同的思想方法和解题思路.因而在概念上理解比较容易接受(当然也有比较抽象的内容如中值定理等).另一方面由于涉及许多具体初等函数,在求导数和积分时有许多计算上的技巧,需要大量练习以熟练掌握这些技巧,因而部分学生即使概念不十分清楚,但仍能正确解答相当多的试题,在考研中得到一定的成绩.?

而在“概率论与数理统计”的学习中更注重的是概念的理解,而这正是广大学生所疏忽的,在考研复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚.对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件.如函数y=f(x),当x确定后y有确定的值与之对应.而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错.由于基本概念没有搞懂,即使是十分简单的题目也难以得分.从而造成低分多的现象.另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算.因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因.?

根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果.下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议.?

一、 学习“概率论”要注意以下几个要点

离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会.?

2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间.而它的取值是不确定的,

随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布.只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解.又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)·P(B)>0,则A,B独立则一定相容.类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂.?

3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得.计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握.?

4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过.因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去.这样往往能“事半功倍”.

◍ 概率论思想总结

这学期学习《概率论与数理统计》这门课,在高中的时候,我们就接触过简单的概率,知道事物的随机现象,即条件相同,事情的结果却不确定,这种不确定现象就叫做随机现象。这个课程内容分为两个部分:概率论和数理统计。这两部分有着紧密的联系。在概率论中,我们研究的的随机变量,都是在假定分布已知的情况下研究它的性质和特点;而在数理统计中,是在随机变量分布未知的前提下通过对所研究的随机变量进行重复独立的观察,并对观察值对这些数据进行分析,从而对所研究的随机变量的分布做出推断。因此,概率论可以说是数理统计的基础。

通过简单的学习,我掌握到,概率统计是真正把实际为题转化为数学问题的学问, 因为它解决的并不是单纯的数学问题,而且不是给你一个命题让你去解决,是让你去构思命题,进而构建模型来想法设法解决实际问题。在实际应用中,就更加需要去想、去假设,对问题需要有更深层次的思考,因此使概率论和数理统计这门课学起来比微积分和线性代数更加吃力,但也比它们更加实用,更贴近实际。

概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。

早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m局就算赢,全部赌本就归谁。但是当其中一个人赢了 a (a

三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。

近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学如信息论、对策论、排队论、控制论、等,都是以概率论作为基础的。

概率论和数理统计是一门随机数学分支,它们是密切联系的同类学科。但是应该指出,概率论、数理统计、统计方法又都各有它们自己所包括的不同内容。 概率论——是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法。

数理统计——是应用概率的理论来研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性。使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。

统计方法——是一上提供的方法在各种具体问题中的应用,它不去注意这些方法的的理论根据、数学论证。

应该指出,概率统计在研究方法上有它的特殊性,和其它数学学科的主要不同点有:

第一,由于随机现象的统计规律是一种集体规律,必须在大量同类随机现象中才能呈现出来,所以,观察、试验、调查就是概率统计这门学科研究方法的基石。但是,作为数学学科的一个分支,它依然具有本学科的定义、公理、定理的,这些定义、公理、定理是来源于自然界的随机规律,但这些定义、公理、定理是确定的,不存在任何随机性。

第二,在研究概率统计中,使用的是“由部分推断全体”的统计推断方法。这是因为它研究的对象——随机现象的范围是很大的,在进行试验、观测的时候,

不可能也不必要全部进行。但是由这一部分资料所得出的一些结论,要全体范围内推断这些结论的可靠性。

第三,随机现象的随机性,是指试验、调查之前来说的。而真正得出结果后,对于每一次试验,它只可能得到这些不确定结果中的某一种确定结果。我们在研究这一现象时,应当注意在试验前能不能对这一现象找出它本身的内在规律。

让我比较感兴趣的是,概率统计在实际中的应用。例如一个公司的决策,就需要用到概率统计。一个公司如果投产,通过对设备生产能力,对市场估计,与如果不投产,对设备生产能力和市场估计的比较。最终做出公司是否投产的决策。

通过这种方法,可以很快的找到怎样投资怎么去决策利益最大。

学习概率论与数理统计需要注意很多东西,以下就是我从其他参考书上学习到的。

1.在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。 此外若对一切实数集合B,知道P(X∈B)。那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。 就对随机试验进行了全面的刻画。它的研究成了概率论的研究中心课题。故而随机变量的引入是概率论发展历史中的一个重要里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。

2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布。只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)。P(B)>0,则A,B独立则一定相容。类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。

3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得。计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。

4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。

1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义.了解数理统计能解决那些实际问题.对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆.例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足.掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误.

2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住.事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。

◍ 概率论思想总结

摘要:根据独立学院的人才培养方案中对概率论与数理统计课程的要求,结合工程技术学院学生的实际情况,本文对概率论与数理统计课程的教学内容及方法、教学设计、教学实验三个方面进行的探讨与实践.经过教学实践证明,取得了较好的效果.

关键词:概率论与数理统计;教学设计;实践教学

概率论与数理统计课程是工科数学的重要基础课之一,该课程的基础是概率论,而重点的应用部分是数理统计,学习概率论与数理统计可以培养学生的统计分析能力和实际问题解决的能力.在学生的后续课程中作用重大,而且对于实际问题的解决提供了很好的方法.根据独立学院的办学宗旨,还有学院的特色及学科的不同,我们有针对性的改革了教学体系,培养学生的开放性思维,教学过程坚持“实用型”.在内容深度上,我们的原则是“淡化理论、注重实用”.在内容构架体系上,我们的出发点是实用性和针对性的教学,教学目的就是解决实际问题,今后重点培养学生的数学应用能力.在教学方法上,通过分析问题来建立数学模型.基于以上我总结的经验,得到一些较适用的教学方法,想推荐给大家,下面就给出三个方面进行探讨与讨论,分别包括概率论与数理统计的教学内容及方法、教学设计、教学实验.

1理出课程的重难点,给出恰当的解决方法

概率论与数理统计课程的重点是:随机事件和概率、二维随机变量及其概率分布、随机变量的数字特征、数理统计.难点是:抽象的概念(随机变量的定义,分布函数的定义等)、理论的推导(如全概公式与贝叶斯公式)、解题的方法与技巧(如二维随机变量的边缘分布)、严密的逻辑性(如随机变量矩、协方差和相关系数,要以随机变量的期望、方差为基础)等.解决办法:多以实际例子及概念产生的背景作为铺垫,引出概念,让学生对概念的理解更深入透彻;减少理论推导,多分析解题思路;重点讲解和训练一般的解题技巧和方法;要求学生多做练习,加强基础知识的训练,牢固掌握概率论的基本知识为后面的数理统计服务等.课堂上对学生的学习状态随时关注,根据学习状态确定习题量及其难度.教材内容要取舍得当,根据学生的学习情况调整教学内容,课堂氛围也很重要,教师要调动好课堂气氛.

2巧妙地设计教学环节

教学环节的设计是很重要的,能直接影响我们的教学效果.判断我们上每一节课是否成功,是取决于学生能够接受多少新知识,那么我们就要保证教学环节的流畅、自然.

2.1上好每一章的第一节课

每一学期的第一节课很重要,一个老师上好第一节课可以带领学生入门,能够吸引学生的注意力,激发学生的学习兴趣,充分调动学习的积极性.对于每一章的第一节课也同样重要,首先老师介绍一下这一章要学的所有知识,简单概括本章的重点与难点,还有这一章与前后章节的联系及在这一本书中的地位,学习本章内容所要用到的学习方法,还有本章知识的实际应用等等.上每一章第一节的时候让学生了解这一章要学习的内容,引起学生的学习兴趣.

2.2讲解新知识要生动有趣,贴切实际生活

在17世纪,英国一个叫梅莱的贵族有“一夜暴富与一夜沦为乞丐”的故事,他的两次结果,给出了概率的起源问题.例如我们常用的手机,从收到短信开始计时到收到下一条短信,这其中的等待时间;还有我们任意时刻等待短信的时间;这都是服从指数分布的.还有经常逛商场会遇到抽奖活动,但是顾客的抽奖结果多是“谢谢参与”,这就是古典概型.涉猎高手和小朋友同时射击,听到枪响兔子倒下,我们看到猎人的枪和孩子的枪都冒烟了,那到底是谁射中的兔子?这个问题就是小概率事件原理.这些实例都需要学生对现象进行细致的观察,把生活中的这些问题模型化,从而获取新认识,如果我们能以上面的实例来讲解,从而引出指数分布,古典概型,小概率原理,那么新的概念、定理、公式就更容易理解,学生也更容易接受.采取这样的方式教学,学生的好奇心就很快被教师调动起来,教师也更容易讲授新的知识,学生也能比较容易地理解并掌握新的知识.例如社会保险在我们现实生活中总会提及,我们也都有这样的疑问:保险公司和投保人之间谁是最大的受益者呢?假如n个人向某保险公司购买人身意外保险(按保期一年算),假定投保人在一年内发生意外的概率是0.01,问(1)该保险公司赔付的概率是多少?(2)n多大时以上赔付的概率超过二分之一呢?分析:设“一个人一年内是否发生意外”是一次随机试验,现有n个人参加了这次保险,那么上面的问题就是一个n重的贝努里概型,且假定每个人在一年内发生意外的概率为P=0.01.设Ai={第i个投保人出现意外},i=1,2,…,n;B={保险公司赔付},又B=A1+A2+…+An,再根据德摩根率,有P(B)=1-p(B)=1-p(A1A2…An)=1-p(A1)p(A2)…p(An)=1-(1-0.01)n=1-0.99np(B)=1-0.99n≥0.5,有0.99n≤0.5,n≥lg0.5lg0.99≈684.16.由此可见,“概率很小的事件在一次试验中几乎是不发生的”,但是大规模的重复试验发生的概率几乎是1,所以保险公司虽说是会有赔付,但是保险公司还是“受益匪浅”的,基本上是不会亏本的.

3增加实践教学环节

随着计算机的普及还有各种数学软件的开发利用,就有必要在概率论与数理统计课程教学中增加实验教学环节.在概率论与数理统计课程的教学中引入数学实验,对学生的学习兴趣提高有所帮助,而且学生学习数学知识的效率也会提高,帮助学生应用数学知识解决实际问题,培养学生的动手能力.

3.1用数学实验思想,优化教学内容

“数学实验”就是从问题出发,借助计算机,通过学习者亲自设计与动手操作,学习、探索和发现数学规律或运用现有的数学知识分析和解决实际问题的过程.换言之,数学实验就是学习者自主探索数学知识及其实际应用的实践过程.数学实验的目的,就是在数学的学习过程中,通过数学实验改善学生的学习方式和学习过程,从而帮助学生在自主探索和合作交流的过程中理解和掌握基本的数学知识与技能、数学思想和方法,并获得广泛的数学活动经验,有效提高数学学习的能力.

3.2增加数学实验内容,激发学习的创造性

在教学中可讲解简单的例子,让学生发挥想象,自己建立数学模型,利用SPSS软件对此模型求解,再观察分析给出计算结果,这样不仅让学生对课程感兴趣也体现了学生的创造性.随意开设数学实验,给学生锻炼的机会,对于培养学生的创造性是非常有效的.

3.3利用数学软件,提高学生的计算能力

概率论与数理统计中的计算问题可以用数学软件SPSS求解,计算机的发展提供了便利,对于过于繁杂的计算用计算机计算是方便快捷的.将数学实验国家精品课的适当的内容穿插在本课程教学中,以习题课的形式介绍,引导有兴趣的学生自己去尝试.课程组每年定期举办数学建模培训班,利用各种教学软件演示概率论与数理统计的应用方法,在整个教学过程贯穿数学建模的思想与方法.融合数学知识强调应用能力的培养,我独立学院的学生在全国大学生数学建模竞赛活动中取得了优异的成绩,这是难能可贵的.

4结束语

本文从三方面探究了工科概率论与数理统计课程在独立学院的教学方法,通过我对教学方法的探索和改革,对于激发学生学习该课程的兴趣有所帮助,体现该课程的价值让学生充分认识到,让学生自己主动学习.以上三个方面的教学方法,应用在独立学院的概率论与数理统计的课堂教学中,取得了较为不错的教学效果.首先增加了学生学习概率论与数理统计的积极性,其次对于活跃课堂气氛有很大的帮助,再次学生不反感学习概率论与数理统计这门课程,最后也是最重要的一点考核通过率有很大的提高.通过以上改革完善了概率论与数理统计的教学,当然今后教学工作中还有更多新的方法,有待我们进一步实践和探索,不断的完善和提高.

参考文献:

〔1〕秦川.概率论与数理统计(第二版)[M].长沙:湖南教育出版社,2013.

〔2〕宗序平.概率论与数理统计(第三版)[M].北京:机械工业出版社,2011.

〔3〕陶伟.概率论与数理统计习题全解[M].北京:国家行政学院出版社,2008.

〔4〕刘洋,张国辉.工科概率论与数理统计教学方法探究[J].牡丹江师范学院学报:自然科学版,2013(4).

〔5〕高丽,王峰.大学生数学应用能力培养的评价模型[J].广西科学院学报,2013(4).

◍ 概率论思想总结

庄家:快来!看看你猜不猜得着哪个贝壳下有绿豆?如果你说对了,让你的钱变多一倍。

M:在玩了一阵之后,马克先生断定,他最多只能三次里赢一次。

庄家:不要走,马克先生。我让你破例玩这个游戏。你随便选一贝壳,我再翻开一个空贝壳,这样,绿豆肯定在另外两个贝壳中的一个里,这时你赢的机会就增加了。

M:可怜的马克先生很快就输光了。他没有认识到翻开一个空贝壳根本不影响他赢的机会,你知道怎么回事吗?

在马克先生选出了一个贝壳之后,至少有一个剩余的贝壳肯定是空的。由于操纵者知道他把绿豆放在哪一个贝壳下面,他就总能翻开一个空贝壳。因此,他这样做对于马克先生修改他挑到正确贝壳的概率没有增添任何有用的信息。

你可以在教室里用一个黑桃A和两张红A证实这一点。将三张牌混合起来,然后把它们放在桌上成一排。让一个学生指出一张牌。他指着黑桃A的概率是多少?显然是1/3.

现在,假定你偷看了你的牌,并在学生指定了一张牌后翻开一张红A。此时你就可以像那个贝壳游戏的操纵者鈥斞魅缦绿致郏合衷谥挥辛秸排疲谔褹就是这两张中的一张。因此学生取得黑桃A的概率似乎已增加到l/2.而实际上,它仍然是1/3.因为,按照假定,学生虽已指定了一张牌,你则总是能翻开一张红A,翻开它根本不能对概率增加任何新信息。

如果像下面那样改变一下这个游戏,就可能引起一场热烈的课堂讨论。不是由你偷看两张未选定的牌来保证你翻开一张红A,而是先让学生指定一张牌,然后让学生翻开剩下的两张之一。若他翻开的是黑桃A,则这一回就不算数,重新再玩一次。只有他翻开的是红A时才看他指定的是什么牌。这样玩法,试问他指定的牌为黑桃A的概率是否增大了呢?

奇怪得很,这回概率的确增大到1/2.我们用下面介绍的取样方法就可看出其中的原因了。把牌的位置叫做1,2,3.不妨假定学生指出的牌在位置2,并假定翻开了第3张牌。它是红A。

这三张牌共有六种同等可能的排法:

1.鈾燗鈾鈾

2.鈾燗鈾鈾

3.鈾鈾燗鈾

4.鈾鈾鈾燗

5.鈾鈾燗鈾

6.鈾鈾鈾燗

如果他翻开的第三张牌是黑桃A,这一盘就算无效,因此第4和第6种情况就不算数,得把它们排除以外。在剩余的四种情形(1,2,3,5)中,第2张牌是黑桃A就有两种可能。因此他指出黑桃A的概率就是2/4=1/2.

这个结果与学生具体指定的是哪张牌,翻开的又具体是哪张牌毫无关系。如果允许马克先生取出要翻的贝壳,并要求翻开的是空的,那么他取得有绿豆的贝壳的概率就会从l/3变到1/2.

◍ 概率论思想总结

强化阶段的主要任务是归纳题型,总结方法,因为题型的重复率的确太高了。

为了达到这个目的,可以通过两种途径来实现这个目标,一是通过看辅导书自己来训练,另外就是配合上强化班,在强化班上,我们会把考研常考题型系统归纳,并且针对每种总结出相应的常规方法,培养大家对常规题型的解题能力。

在做题的时候,有意识地加强练习做题的感觉,对复习效果会事半功倍,在做题时可以从以下几个方面入手:

第一,读题

做题要从题目的叙述开始。拿到一个题目,做题的第一步是要仔细阅读题目,把握题目的主要含义。阅读题目直到即使不看题目,也能记住题目的意思。

第二,找出切入点

仔细考虑题目的各主要部分,将它们以不同的方式进行组合,再调动已有知识,寻求其与题目之间的联系,试着认清题目中所隐含的你熟悉的东西。

第三,分析题目要求

分析下题目所求需要哪些条件,然后寻找这些条件与第二问找出的思路的关系,这样就能找到解题点了!

如果你有意识地使用这种方式解题,那么一段时间过后,你会发现自己的解题能力、解题技巧、解题速度与正确性都会大大提高。


◍ 概率论思想总结

定义:设随机试验的样本空间为S={e}. X=X(e)是定义在样本空间S上的单值函数,称X=X(e)为随机变量。

三大离散型随机变量的分布 1)(0——1)分布。E(X)=p, D(X )=p(1-p)

2)伯努利试验、二项分布 E(X)=np, D(X)=np(1-p)

3) 泊松分布 P(X=k)= (?^k)e^(- ?)/k! (k=0,1,2,……)

E(X)=?,D(X)= ?

注意:当二项分布中n 很大时,可以近似看成泊松分布,即np= ?

定义:设X是一个随机变量,x是任意的实数,函数 F(x)=P(X≤x),x属于R 称为X的分布函数 分布函数的性质:

连续性随机变量的分布函数的求法(由分布函数的图像求解分布函数,由概率密度求解分布函数)

连续性随机变量的分布函数等于其概率密度函数在负无穷到x的变上限广义积分 相反密度函数等与对应区间上分布函数的导数 密度函数的性质:1)f(x)≥0

三大连续性随机变量的分布: 1)均与分布 E(X)=(a+b)/2 D (X)=[(b-a)^2]/12

2)已知随机变量X的 密度函数求解Y=g(X)的密度函数 第三章 多维随机变量及其分布(主要讨论二维随机变量的分布)

定义 设(X,Y)是二维随机变量,对于任意实数x, y,二元函数

F(x, Y)=P[(X≤x)交(Y≤y)] 称为二维随机变量(X,Y)的分布函数或称为随机变量联合分布函数离散型随机变量的分布函数和密度函数 连续型随机变量的分布函数和密度函数

关键掌握利用卷积公式求解Z=X+Y的概率密度 第四章.随机变量的数字特征

离散型随机变量和连续型随机变量数学期望的求法 六大分布的数学期望

连续性随机变量的方差 D(X)=E(X^2)-[E (X )]^2 方差的基本性质:

D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(Y))} 特别地,若X,Y不相关,则有D(X+Y)=D(X)+ D(Y) 切比雪夫不等式的简单应用 3. 协方差及相关系数

协方差:Cov(X ,Y )= E{(X-E(X))(Y-E(Y))} 相关系数:m=Cov(x,y)/√D(X) √D(Y)

当相关系数等于0时,X,Y 不相关,Cov(X ,Y )等于0 不相关不一定独立,但独立一定不相关

◍ 概率论思想总结

泰德·威廉斯是棒球史上极其优秀的棒球手,他的击打率在四成以上。

对于为什么能有如此高的击球率,威廉斯并没有遮遮掩掩,他在《打击的科学》一书中,向世人分享了自己的击球技巧。在威廉斯看来,棒球击球区域可以划分为77个,当球进入最理想区域时挥棒击打,就能保证四成以上的击打率。如果勉强去击打位于最边缘位置的球,击打率会下降到三成以下。也就是说,为了保存体力并取得最好成绩,威廉斯只击打高概率球,对于那些低概率球一律放弃。

威廉斯的技巧既富含科学道理,又有实践经验做支撑,但还是遭到了一部分人的质疑。想象一下,球场上有上万名观众在呐喊助威,球员是站在那里等待高概率球,还是挥舞球棒击打飞来的每个球呢?真实情况是,为了不让观众觉得自己“懒惰”“没用”,大多数球员选择了后者。

无独有偶,以色列经济学家阿扎尔对足球门将扑点球做过统计:当门将待在中路时,扑住点球的概率为33。3%;而扑向左路和右路,扑住点球的概率分别为14。2%和12。6%。照此统计来看,罚点球时,门将最应该待在中路。可实际情况是,只有6。3%的门将选择守在中路,剩余93。7%的門将会根据自己的判断左右出击。通过心理因素分析,阿扎尔认为,一旦站在球场上,门将很容易被周围的气氛感染,对高概率一说置若罔闻。对他们来说,表现神勇显得更重要。

威廉斯说:“要想取得高击打率,根本不需要打每个球,只击打高概率球就可以了。”也就是说,我们只用耐心等待好球出现,然后发力一击就可以了,完全没有必要不管青红皂白地胡乱挥棒击打。可在现实生活中,又有多少人能从容面对低概率球呢?

◍ 概率论思想总结

一、选择题(本大题共5小题,每小题3分,总计15分)

1.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现2点的概率为( )。

(A) 3/6 (B)2/3 (C)1/6 (D) 1/3

θx2x>12.设随机变量的概率密度f(x)=,则θ=( )。 x≤10

(A)1/2 (B)1 (C)-1 (D)3/2

3.设χ1~

222222χ2(n1),χ2~χ2(n2),χ12,χ2独立,则χ1+χ2~( )。 22χ2(n) (B)χ12+χ2~χ2(n1)

22(A) χ1+χ2~22(C) χ1+χ2~t(n) (D)χ1+χ2~χ2(n1+n2)

4.对于任意随机变量X,Y,若D(XY)=D(X)+D(Y),则( )

(A)X与Y一定相互独立 (B)X与Y一定不相关

(C)X与Y一定不独立 (D)上述结论都不对

5.设X~N(μ,σ),其中μ已知,σ未知,X

统计量的是( )

(A) 1(X2+X2+X2) (B) X+3μ 12312221,X2,X3为其样本, 下列各项不是 σ

(C) max(X,X,X) (D) 1(X+X+X) 1231233

二、填空题(本大题共5小题,每小题3分,总计15分)

1.设有5件产品,其中有2件次品,今从中任取出1件为次品的概率为( )。

2.设A、B为相互独立的随机事件P(A)=0.3,P(B)=0.5,则P(A∪B)=( )。

3.设D(X)=9,D(Y)=4, ρxy=0.5,则D(X+Y)=( )。

1,4.设随机变量X的概率密度f(x)=0,

5.设Χ~N(μ,σ),则

20≤x≤1 则P{X>0.5}=( )。 其它μσn~( )。

三、计算题(本大题共6小题,总计70分)

1.(本题10分)某厂有三条流水线生产同一产品,每条流水线的产品分别占总量的40%,35%,25%,又这三条流水线的次品率分别为0.02, 0.04,0.05。现从出厂的产品中任取一件,问恰好取到次品的概率是多少

Be5x,x>02.(本题10分)设连续型随机变量X的密度为 f(x)= x≤0.0,

(1)确定常数B; (2)求P{X>0.4}; (3)求分布函数F(x);

3.(本题15分)设二维随机变量(X, Y)的分布密度

6,x2

求(1)关于X和关于Y的边缘密度函数;(2)问X和Y是否相互独立

(3)E(X),E(Y),D(X),D(Y),E(XY),Cov(X,Y)

4.(本题10分)设X服从参数为λ的泊松分布,试求参数λ的最大似然估计。

5.(本题15分)某厂利用两条自动化流水线灌装番茄酱,分别以两条流水线上抽取样本:

2X1,X2,,X12及Y1,Y2,,Y17算出X=10.6(g),Y=9.5(g),S12=2.4,S2=4.7,假设这两

条流水线上灌装的番茄酱的重量都服从正态分布,且相互独立,其均值分别为μ1,μ2, 求(1)设两总体方差σ1=σ2条件下,μ1μ2置信水平为95%的置信区间;

(2)σ1/σ2的置信水平为95%的置信区间。

经以往检验已确认某公司组装PC机的次品率为0.04,现对该公司所组装的PC机100台逐个独立测试

(1) 试求不少于4台次品的概率(写出精确计算的表达式);

(2) 利用中心极限定理给出上述概率的近似值;(Φ(0)=0.5)

6. (本题10分) 某厂生产的固体燃料推进器的燃烧率服从正态分布2222N(μ,σ2),μ=40cm/s,σ=2cm/s。现在用新方法生产了一批推进器,从中随机取 n=25只,测得燃烧率的样本均值为=41.25cm/s。设在新方法下总体均方差仍为2cm/s,问这

批推进器的燃烧率是否较以往生产的推进器的燃烧率有显著的提高取显著性水平α=0.05

注:Z0.05=1.645,Z0.025=1.960

t0.025(27)=2.0518,t0.05(27)=1.7033,t0.025(28)=2.0484,t0.05(28)=1.7011

t0.025(29)=2.0452,t0.05(29)=1.6991,F0.025(11,16)=2.94,F0.025(12,17)=2.82 F0.025(16,11)=3.28,F0.025(17,12)=3.14,t0.05(13)=1.7709,t0.05(15)=1.7531

F0.025(7,6)=5.70,F0.025(6,7)=5.12,(t0.05(13)=1.7709)


◍ 概率论思想总结

大学数学概率论各章节重要考点

一、概率论的发展过程

起源

概率论是研究随机现象数量规律的数学分支,是一门研究事情发生的可能性的学问。但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺开始研究掷骰子等赌博中的一些简单问题。

概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。

发展

随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和拉普拉斯又导出了第二个基本极限定理(中心极限定理)的原始形式。

拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。

19世纪末,俄国数学家切比雪夫、马尔可夫、李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面柯尔莫哥洛夫、维纳、马尔可夫、辛钦、莱维及费勒等人作了杰出的贡献。

二、大学数学概率论各章节重要考点

概率与数理统计这门课程从试卷本身的难度的话,在三门课程中应该算最低的,但是从每年得分的角度来说,这门课程是三门课中得分率最低的。下面就由小编为大家带来大学数学概率论各章节重要考点,大家一起去看看怎么做吧!

◍ 概率论思想总结

在大二刚开学我接触到了概率论与数理统计这门课程,虽然在高中时已经接触到了许多跟概率相关的东西,比如随机事件、古典概型以及一系列的计算方法但是在接触到更加高深的层次后还是有许多不一样的感受。

在课程开始之初老师就告诉我们这门课不是很难,关键还在于上课认真听讲。通过老师的简单介绍,我了解到概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。对于作为信息管理与信息系统专业的我,其日后的帮助也是很大的,尤其是对于日后电脑方面的操作有着至关重要的辅助作用。

在这门课程中我们首先研究的是随机事件及一维随机变量二维随机变量的分布和特点。而在第二部分的数理统计中,它是以概率论为理论基础,根据试验或者观察得到的数据来研究随机现象,对研究对象的客观规律性做出种种估计和判断。整本书就是重点围绕这两个部分来讲述的。初学时,就算觉得理解了老师的讲课内容,但是一联系实际也会很难以应用上,简化不出有关所学知识的模型。在期末复习中,自己重新对于整个书本的流程安排还有每个章节的重点重新复习一遍,才觉得有了点头绪。

在长达一个学期的学习中,我增长了不少课程知识,同时也获得了好多关于这门课程的心得体会。整个学期下来这门课程给我最深刻的体会就是这门课程很抽象,很难以理解,但是这门课程给我带来了一种新的思维方式。前几章的知识好多都是高中讲过的,接触下来觉得挺简单,但是后面从第五章的大数定理及中心极限定理就开始是新的内容了。我觉得学习概率论与数理统计最重要的就是要学习书本中渗透的`一种全新的思维方式。统计与概率的思维方式,和逻辑推理不一样,它是不确定的,也就是随机的思想。这也是一个人思维能力最主要的体现,整个学习过程中要紧紧围绕这个思维方式进行。这些都为后面的数理统计还有参数估计、检验假设打下了基础。其次,在所有数学学科中,概率论是一门具有广泛应用的数学分支,是一门真正是把实际问题转换成数学问题的学科。在最后一章中,假设检验就是一个很好的例子。由前面所讲的伯努利大数定律知,小概率事件在N次重复试验中出现的概率很小,因此我们认为在一次试验中,小概率事件一般不会发生,如果发生了就该怀疑这件事件的真实性。正是根据这个思想去解决实际中的检验问题,总之概率与数理统计就是一门将现实中的问题建立模型然后应用理论知识解决掉的学科,具有很强的实际应用性。

◍ 概率论思想总结

概率论基础教程是人民邮电出版社出版的书籍。概率论基础教程(第8版)》通过大量的.例子讲述了概率论的基础知识, 主要内容有组合分析、概率论公理化、条件概率和独立性、离散和连续型随机变量、随机变量的联合分布、期望的性质、极限定理等。

《概率论基础教程(第8版)》内容简介:概率论是研究自然界和人类社会中随机现象数量规律的数学分支。《概率论基础教程(第8版)》通过大量的例子讲述了概率论的基础知识, 主要内容有组合分析、概率论公理化、条件概率和独立性、离散和连续型随机变量、随机变量的联合分布、期望的性质、极限定理等。 《概率论基础教程(第8版)》附有大量的练习, 分为习题、理论习题和自检习题三大类, 其中自检习题部分还给出全部解答。

《概率论基础教程(第8版)》作为概率论的入门书, 适用于大专院校数学、统计、工程和相关专业(包括计算科学、生物、社会科学和管理科学)的学生阅读, 也可供应用工作者参考。


看过“概率论基础教程第八版(Sheldon M.Ross著)”的人还看了:

1.电子测量技术第3版(林占江著)课后答案下载

2.电气照明技术 第二版 谢秀颖 课后答案 中国电力出版社

◍ 概率论思想总结

《概率论与数理统计》是原教育部委托中国人民大学经济信息管理系赵树源教授主编的高等学校文科教材《经济应用数学基础》的第三册。它介绍了初等概率论的.基本知识及数理统计的一些方法,同时还对马尔可夫链作了简单介绍。 前 言 《概率论与数理统计》是原教育部委托中国人民大学经济信息管理系赵树源教授主编的高等学校文科教材《经济应用数学基础》的第三册。它介绍了初等概率论的基本知识及数理统计的一些方法,同时还对马尔可夫链作了简单介绍。 这次修订,对初版编写与排印中的疏漏进行了修正,并对个别章节进行了重写,调整了各章...


看过“概率论与数理统计修订版(韩旭里著)课后答案下载”的人还看了:

1.《概率论与数理统计》课后习题答案 复旦大学出版社

2.概率论与数理统计答案

◍ 概率论思想总结

第一,我要说的是同学们在学习概率论与数理统计的时候不要一头扎入古典概型的概率计算中不可自拔。概率论的第一部分就是关于古典概型与几何概型的计算问题,有很多问题是很复杂的,一旦陷入这一类问题的题海中,要么你的脑瓜会越来越聪明,要么打击你的信心,对概率论失去兴趣。一般同学都会处于后一种状态。那么怎么办呢?请转阅第二条。

第二,对概率论与数理统计的考点要整体把握。考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算即可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。考研数学考试大纲数学三删除了对概率论与数理统计中的假设检验的要求,这算是较上一年大纲的一个大的变化,但如果同学们在复习的时候就是整体把握的,就会明白大纲的这点变化对自己的复习是没有影响的。这就是对一门课程整体把握的优势。

第三,在心理上重视。考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也向学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做的准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!

◍ 概率论思想总结

一、选择题(本大题共5小题,每小题3分,总计15分)

1.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现1点的概率为( )。

(A)1/3 (B)2/3 (C)1/6 (D)3/6

2.设随机变量的概率密度f(x)=Ce,x>0,则C=( )。 x

0,x≤0

(A) 1 (B) 1/2 (C) 2 (D) 3/2

3.对于任意随机变量X,Y,若E(XY)=E(X)E(Y),则( )

(A) D(XY)=D(X)D(Y) (B)D(XY)=D(X)+D(Y)

(C) X与Y一定相互独立 (D)X与Y不独立

4.设U~χ2(n1),V~χ2(n2),U,V独立,则F=

χ2(n) U/n1。 ~( )V/n2 (A) F~t(n1) (B) F~

(C) F~F(n1,n2) (D) F~t(n)

5.设X~N(1.5,4),且Φ(1.25)=0.8944,Φ(1.75)=0.9599, 则P{2≤X<4}=( )。

(A)0.8543 (B)0.1457 (C)0.3541 (D)0.2543

二、填空题(本大题共5小题, 每小题3分,总计15分)

1.设随机变量X的概率密度f(x)=2x

00≤x≤1,则P{X>0.4}=( )。 其它

2.设A、B为互不相容的随机事件,P(A)=0.5,P(B)=0.2,则P(A∪B)=( )

3.设D(X)=16, D(Y)=25, ρXY=0.3,则D(2X+Y3)=( )。

4.设有10件产品,其中有4件次品,今从中任取出1件为次品的概率是( )。

5.设X~N(μ,σ),则均值~( )。 2

三、计算题(本大题共6小题,总计70分)

1.(本题10分)仓库中有10箱同规格的晶体管,已知其中有5箱、3箱、2箱依次为甲、乙、丙厂生产的,且甲、乙、丙三厂的次品率分别为1/10、1/15、1/20,从这10箱产品中任取一件产品,求取得正品的概率。

Qe6x

2.(本题10分)设连续型随机变量X的密度为 f(x)=0x>0x≤0.

求:(1)确定常数Q; (2) P{X>; (3)求分布函数F(x);

(4)E(X),D(X)。

3.(本题15分)设(X,Y)的联合密度为f(x,y)=Ay(1x),0≤x≤1,0≤y≤x,

(1)求系数A;(2)求关于X及Y的边缘密度。 (3)X与Y是否相互独立 (4)求f(yx)和f(xy)。

4.(本题10分)设X1,X2,,Xn为总体X的`一个样本,X的密度函数: 16

(β+1)xβ,0

β>0, 求参数β的极大似然估计量。

5.(本题10分) 某车间用一台包装机包装糖,包得的袋装糖重是一个随机变量,它服从正

态分布。当机器正常时,其均值为0.5公斤,标准差为0.015公斤。某日开工后为检查包装机是否正常,随机地抽取它所包装的糖9袋,称得净重的平均值为0.511公斤。问机器工作是否正常(α=0.05)

6.(本题15分)设甲乙两车间加工同一种产品,其产品的尺寸分别为随机变量为X和Y,且X~N(μ1,σ1),Y~N(μ2,σ2),今从它们的产品中分别抽取若干进行检测,测得数据如下:n1=8,1=20.93,s1=2.216,n2=7,=21.50,s2=4.397

(1)试比较两车间加工精度(方差)在显著性水平α=0.05 下有无显著差异。

(2)求μ1μ2的置信度为90%的置信区间。 2222

注:Z0.05=1.645,Z0.025=1.960

◍ 概率论思想总结

思想评论:论刺激-On Stimulations 论刺激

【内容提示】

近些年,社会上有一种现象,那就是人们动不动就想寻找刺激,有物质刺激、精神刺激等。公益之事没有物质奖不干。集体主义淡漠了,个人利益的风气增长了。请你就这一问题写一篇文章,发表自己的看法。

以下词语供参考:

1.stimulation n.刺激(作用)

2.social phnomnon 社会现象

3.collctivism n.集体主义

【作文示范】

On Stimulations

In rcnt yars, mor and mor popl ar sking for stimulations. This social phnomnon has also sprad widly among us studnts.

Last wk, it was our class' turn to clan th school campus. This tim, in ordr to arous our nthusiasm for th labor, our classmastr announcd that thos who attndd th labor would gt som kind of matrial rwards①. Although vryon knw th rwards would b unimportant in trms of mony, two thirds of th studnts in our class attndd th labor, as thy flt thy got a kind of stimulation from it. How unimaginabl it was! Why should such things happn?

Many yars ago, it was rgardd as an honour to srv th popl and socity. But in rcnt yars, although socity, scinc, and tchnology hav bn gratly dvlopd and our living conditions hav bn improvd, som popl fl lonly and spiritually② mpty. Whil sking prsonal intrsts and fam, thy hav bcom much mor slf-cntrd. Finally thy los touch with th collctiv③. Thy only do things that can bnfit thmslvs. By and by thy fl lonly vn with a lot of matrial comforts. This is why thy must sk for mor stimulations to chr up thmslvs. Sking for matrial stimulations is not a propr way to gt rid of lonlinss. A bttr way out is to car mor for th collctiv and othrs. Only by this mans can thy gt back what thy hav lost by avoiding social activitis.

For us young popl, bsids our studis, w also nd collctiv activitis. In taking part in ths activitis, not only can our livs b nrichd④, but w can also train our sns of collctivism and thus b spiritually rwardd. So why don't w also look for som spiritual stimulation, fllow studnts?

【词语解释】

①rward[ri'w&:d] n.报酬;酬劳;奖赏

②spiritually['spiritju li] ad.精神上;心灵上

③collctiv[k 'lktiv] n.集体;集体事业

④nrich[in'ritM]v.使富裕;使丰富

【写法指要】

本文的论点是“sking for spiritual stimulations instad of matrial ons”(寻求精神刺激而不要寻求物质刺激),这是从整篇文章中归纳出来的。全文运用多种推理方法对这一论点进行论证。作者在第一段提出问题;第二、三段用事例法论证某些学生为得到一点物质刺激而参加集体劳动;第四段用归纳法论证物质丰富而精神空虚的原因;第五、六段用演绎法论证青年人应该关心集体和他人的道理,我们可以从这两段总结出作者的三段式推理过程:

大前提:大家都应该关心集体和他人;

小前提:我们青年人是大家的一部分;

结论:我们要培养集体主义精神。 思想评论:论刺激-On Stimulations

◍ 概率论思想总结

一、构建知识框架

估计问题是概率论与数理统计中最后一部分的内容。它的考试范畴是矩估计和极大似然估计。所以,在学习这部分之前,大家要把统计学的基本知识搞清楚,了解常见的统计量及其分布。而且大家还要深刻理解大数定理和中心极限定理的内涵。在这些基础上,大家学习矩估计和极大似然估计就好多了。

二、把握知识原理

在有前面的知识做铺垫后,大家就要开始学习矩估计和极大似然估计了。先看矩估计,它的本质原理是样本矩有相合性,所以可以用样本矩来替代总体矩。同时总体矩中含有未知参数。所以通过建立含有未知参数的样本矩的方程就可以把参数给估计出来。再看极大似然估计,它的本质原理是基于一种假设,即我们观察的一组样本数据,那么观察这组数据发生的概率应该是比较大的。所以我们对参数的估计就是要找一个估计量使得这组数据发生的概率。总之,只有理解了矩估计和极大似然估计的深刻原理,我们才能把握好这个知识,才能更好的应用它。

三、多做习题练习

在前面有了知识体系和掌握了知识原理后,剩下的就是多做题对知识进行理解了。有句古话:光说不练假把式。所以对知识的熟练掌握还是要通过做题来实现。同时,我也反对题海战术,做题不是盲目的做题,不是只做不练。做题应该是有选择的做题,做一个题就应该了解一个方法,掌握一个原理。所以,大家可以参考历年真题来进行练习。每做一个题,大家就该考虑下它是怎么考察我们所学的知识点的。如果做错了,大家还要多进行反思。找到做错的原因,并且逐步改正。这样才能长久的提高。

文章来源://www.qx54.com/fayangao/159001.html

概率论思想总结相关文章

更多>